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Conference Program

All the Timetable is scheduled for Yekaterinburg Time

(London Time =Yekaterinburg Time - 4hrs; CEST Time = Yekaterinburg Time - 3hrs; Moscow Time
= Minsk Time = Yekaterinburg Time - 2hrs; Novosibirsk Time = Yekaterinburg Time + 2hrs; Beijing
Time = Perth Time = Yekaterinburg Time + 3hrs; Tokyo Time = Yekaterinburg Time + 4hrs).

Monday, 24 August

10:30 — 10:50 Connections to Zoom, welcome talks

10:50 — 11:00 Official Opening of the Workshop

11:00-15:00 Plenary talks. Chair: Natalia Maslova

11:00 — 11:50 Wujie Shi: On the widths of finite groups

12:00 — 12:50 Ilya Gorshkov: On Thompson’s conjecture for finite simple groups

13:00 — 13:50 Cheryl Praeger: Totally 2-closed groups

14:00 — 14:50 Alexandre Zalesskii: Two projects in the representation theory of finite simple groups

16:00-18:30 Contributed talks.

Amethyst room. Chair: Anatoly Kondrat’ev

16:00 — 16:20 Giudici M.: Groups generated by derangements

16:30 — 16:50 Bors A.: Finite groups with an affine map of large order

17:00 — 17:20 Alavi S.: On flag-transitive automorphism groups of 2-designs with ged(r,\) =1

17:30 — 17:50 Noce M.: Ramification structures for quotients of the Grigorchuk groups

18:00 — 18:20 Vannacci M.: Iterated Wreath Products in Product Action and Where They Act

Malachite room. Chair: Vladislav Kabanov

16:00 — 16:20 Munemasa A.: The regular two-graph on 276 vertices revisited

16:30 — 16:50 Bailey R.F.: On the 486-vertex distance-reqular graphs of Koolen—Riebeek and Soicher

17:00 — 17:20 Akbar A.: On the extremal problems concerning some bond incident degree indices of
graphs

17:30 — 17:50 Kunyavskii B.: Local-global invariants of groups and Lie algebras

Tuesday, August 25

11:00-14:00 Plenary talks. Chair: Peter Cameron

11:00 — 11:50 Mikhail Khachay: Efficient approximation of vehicle routing problems in metrics of
a fixed doubling dimension

12:00 — 12:50 Mikhail (Misha) Volkov: Computational complexity of synchronization under regular
constraints

13:00 — 13:50 Yaokun Wu: Digraph homomorphisms with the path-lifting property

15:00-17:00 Contributed talks.

Amethyst room. Chair: Sergey Shpectorov

15:00 — 15:20 Betten A.: Group Actions on Invariant Relations

15:30 — 15:50 Misseldine A.: Counting Schur Rings over Cyclic Groups

16:00 — 16:20 Perepechko A.: Automorphisms of affine surfaces and the Thompson group T

16:30 — 16:50 Jones G.A.: A short explicit proof of Greenberg’s Theorem

Malachite room. Chair: Tatsuro Ito

15:00 — 15:20 Xiong Y.: Competition numbers and phylogeny numbers of generalized Hamming graphs
with diameter at most three

15:30 — 15:50 Taranenko A.A.: On perfect 2-colorings of Hamming graphs

16:00 — 16:20 Mogilnykh I.: Transitive extended perfect codes from regular subgroups of GA(r,2)

16:30 — 16:50 Gorkunov E.V.: FEquitable partitions of a generalized Petersen graph into 3 cells

Yekaterinburg-Online, Russia 5 August 24-30, 2020



Conference Program 2020 Ural Workshop on Group Theory and Combinatorics

Wednesday, August 26

11:00-14:00 Plenary talks. Chair: Rosemary Bailey

11:00 — 11:50 Tatsuro Ito: The Weisfeiler—Leman stabilization revisited from the viewpoint
of Terwilliger algebras

12:00 — 12:50 Tlia Ponomarenko: On the Weisfeiler—Leman dimension of Paley graphs

13:00 — 13:50 Vladimir Trofimov: Cayley graphs among vertex-symmetric graphs

15:00-17:00 Contributed talks.

Amethyst room. Chair: Maria Grechkoseeva

15:00 — 15:20 Sotomayor V.: Indices not divisible by a given prime in factorised groups

15:30 — 15:50 Zhang J.: Some results related to the open problem proposed by Professor Monakhov

16:00 — 16:20 Trofimuk A.: Finite factorized groups with w-supersoluble subgroups

16:30 — 16:50 Pérez-Ramos M.: From soluble to w-separable groups

Malachite room. Chair: Anna Taranenko

15:00 — 15:20 Makhnev A.: On small antipodal graphs of diameter 4

15:30 — 15:50 Golubyatnikov M.P.: On distance-regular graphs with intersection array
{7T(n—1),6(n —2),4(n — 4);1,6,28}

16:00 — 16:20 Tan Y.: Thin Q-polynomial distance-regular graphs

16:30 — 16:50 Zullo F.: A family of linearized polynomials and related linear sets

Thursday, August 27

11:00-14:00 Plenary talks. Chair: Chris Parker

11:00 — 11:50 Sergey Shpectorov: Generalised Sakuma theorem

12:00 — 12:50 Alexey Staroletov: On azial algebras of Jordan type

13:00 — 13:50 Alexander (Sasha) Ivanov: Densely embedded subgraphs in locally projective graphs
15:00-17:00 Contributed talks.

Amethyst room. Chair: Vladimir Trofimov

15:00 — 15:20 Janabi H.A.: Subgroups of arbitrary even ordinary depth

15:30 — 15:50 Ardito C.: Donovan’s Conjecture and the classification of blocks

16:00 — 16:20 Monetta C.: Complemented subgroups in infinite groups

16:30 — 16:50 Saha S.: Skeleton groups and their isomorphism problem

Malachite room. Chair: Alexander Makhnev

15:00 — 15:20 Shukur A.: Pseudospectrum Energy of Graphs

15:30 — 15:50 Csajbdk B.: Combinatorially defined point sets in finite projective planes

16:00 — 16:20 Fedoryaeva T.: Graphs of diameter 2 and their diametral vertices

16:30 — 16:50 Elakkiya T.: Gregarious Kite Factorization of Tensor Product of Complete Graphs
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Friday, August 28

11:00-14:00

11:00 — 11:50
12:00 — 12:50
13:00 — 13:50

15:00-17:30

Plenary talks. Chair: Akihiro Munemasa

Denis Krotov: On the parameters of unrestricted completely regular codes
Peter Cameron: From de Bruijn graphs to automorphisms of the shift
Rosemary Bailey: Latin cubes

Contributed talks.

Amethyst room. Chair: Alexey Staroletov

15:00 — 15:20
15:30 — 15:50
16:00 — 16:20

16:30 — 16:50

17:00 — 17:20

Maksakov S.P.: On the lattice of w-fibered formations of finite groups

Zini G.: On the Mdébius function of a finite group

Tlenko K.A.: On coincidence of Gruenberg-Kegel graphs of non-isomorphic finite groups
Minigulov N.A.: On finite non-solvable groups whose Gruenberg-Kegel graphs are
isomorphic to the paw

Zinovieva M.R.: Non-ezxistence of sporadic composition factors for finite groups

with a condition on their Gruenberg-Kegel graphs

Malachite room. Chair: Mikhail Khachay

15:30 — 15:50
16:00 — 16:20
16:30 — 16:50

Golafshan M.: Unipotent dymamics on a torus

Zhao D.: Complex Clifford group and unitary design

Timofeenko A.V.: On distributions over classes of conjugate elements and pairs of
orders of products of two of them (2 x 2,2)-triples of involutions of some groups

Saturday, August 29

11:00-14:00
11:00 — 11:50
12:00 — 12:50
13:00 — 13:50

15:00-17:00

Plenary talks. Chair: Cheryl Praeger

Long Miao: On second maximal subgroups of finite groups

Danila Revin: Reduction theorems for relatively maximal subgroups
Christopher Parker: Subgroups like minimal parabolic subgroups
Contributed talks.

Amethyst room. Chair: Pablo Spiga

15:00 — 15:20
15:30 — 15:50
16:00 — 16:20
16:30 — 16:50

Maslova N.V.: Classification of maximal subgroups of odd index in finite almost simple
groups and some its applications

Skuratovskii R.V.: The derived series of Sylow 2-subgroups of the alternating groups
and minimal generating sets of their subgroups

Gao Z.: On the set related to the rank of a Sylow p-subgroup in finite groups

Ogiugo M.E.: The number of chains of subgroups for certain finite symmetric groups
isomorphic to the paw

Malachite room. Chair: Alexander Ivanov

15:00 — 15:20
15:30 — 15:50
16:00 — 16:20
16:30 — 16:50

Das S.: Computation of various degree-based topological indices of the third type of
triangular Hex-derived network of dimension n by using M -polynomial

Stott L.: Trees and cycles

Gholaminezhad F.: Characterization of some finite G-graphs

Timofeenko A.V.: Algebraic and computer models of parquethedra in the processes of
describing their combinatorial types and filling the space

Sunday, August 30

11:00-14:00

11:00 — 11:50
12:00 — 12:50
13:00 — 13:50
14:30-15:30
15:30

Plenary talks. Chair: Ilia Ponomarenko

Vladislav Kabanov: On strongly Deza graphs

Elena Konstantinova: Dual Seidel switchings and integral graphs

Arseny Shur: Words separation and positive identities in symmetric groups
Open Problems Session. Chair: Natalia Maslova

Official Closing of the Workshop
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Latin cubes

Rosemary A. Bailey
The University of St Andrews, St Andrews, UK
rab24@st-andrews.ac.uk

The Latin square is a familiar combinatorial object. If it has order n, it consists of an n X n square
array of cells, with one letter in each cell, in such a way that each letter occurs exactly once in each row
and column.

If the labels of the rows and columns are the same letters that occur in the array, then the Latin
square becomes the Cayley table of a quasigroup. Cayley tables of groups are a special (and rather rare)
case of this. There is a combinatorial condition called the quadrangle criterion. A Latin square is the
Cayley a table of a group (possibly after suitable permutations of the labels and letters) if and only if it
satisfies the quadrangle criterion: in this case, the group is determined up to isomorphism.

Another way of thinking about a Latin square is as a set of three partitions of the set of n? cells:
the parts are rows, columns and letters respectively. Any two of these partitions, together with the two
trivial partitions, give a Cartesian lattice of dimension two, which is sometimes called a grid.

Now let us increase the dimension and think about cubes. What should a Latin cube of order n be?
Several different definitions have been given, all involving a three-dimensional n x n x n array of cells.
Some definitions have n letters; some have n? letters; some simply have a subset of the cells.

I will use the definition that has n? letters, each occurring once in every two-dimensional slice of the
cube. Such a cube has four natural partitions into n? parts of size n. The parts of one partition are the
one-dimensional slices (or lines) parallel to the z-axis. Similar partitions are defined by the y-axis and
the z-axis. The parts of the fourth partition are the letters.

Such a Latin cube is called regular if the sets of letters in any two parallel lines of the cube are either
the same or disjoint.

I will describe some very recent work (joint with Peter Cameron, Cheryl Praeger and Csaba Schneider)
that shows that the following three conditions on a Latin cube (as defined above) are equivalent.

e The Latin cube is regular.

e Every set of three of the four partitions described above form the minimal non-trivial partitions in
a Cartesian lattice of dimension three.

e There is a group T of order n, determined uniquely up to isomorphism, such that the cells of the
cube can be identified with the elements of T in such a way that the letter partition is the partition
of T? into the right cosets of its diagonal subgroup, which is {(t,t,t) : t € T}.

Amazingly, this result does not require n to be finite.
This result is the foundation step of a proof by induction of a similar result for all dimensions bigger
than two.
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From de Bruijn graphs to automorphisms of the shift

Peter J. Cameron
The University of St Andrews, St Andrews, UK
pjc20@st-andrews.ac.uk

This is joint work with Collin Bleak and Feyishayo Olukoya

A (finite-state, deterministic) automaton is a machine with a finite set of internal states; when it reads
a symbol from a given input alphabet it changes its state in a deterministic way. An automaton can be
represented by an edge-labelled directed graph whose vertices are the states, edge-labels corresponding to
the symbols in the alphabet, so that there is an edge with label a from s to t if reading symbol a causes
the machine to change from state s to state ¢. If the machine reads the symbols of a word in order, it
undergoes the concatenation of the corresponding transitions.

An automaton is synchronizing if there is a word w (called a reset word) such that reading w brings
it to a known state, independent of its start state. However, we need a stronger concept: we call an
automaton strongly synchronizing if there is a positive integer n such that every word of length n is a
reset word. The smallest such n is called the synchronization length of the automaton.

The de Bruin graph G(n,A) of word length n over an alphabet A has as vertex set the set A"
of words of length n over A, with an edge labelled a from biby---b, to by---b,a. It is a strongly
synchronizing automaton with synchronization length n. Indeed, any strongly synchronizing automaton
with synchronization length n over A is a folding of the de Bruijn graph G(n, A), the quotient by an
equivalence relation respecting the action of the automaton.

How many strongly synchronizing automata (i.e. foldings of the de Bruijn graph) with synchronization
length at most n over an alphabet of size g are there? This is an interesting but difficult problem. For
n = 1, the answer is the Bell number B(g), the number of partitions of the alphabet. We have a formula
for the case n = 2, but have been unable to solve the problem in general.

A transducer is an automaton which can write as well as read symbols from the alphabet A. We
always assume that a transducer “eventually writes something”, that is, if it reads a word which returns it
to the starting state, it must write a non-empty word. Now we can regard a transducer with this property
as defining a function from the set A of all infinite sequences of elements of A to itself. We can identify
A% with the Cantor set (giving it the Tychonoff product topology given by the discrete topology on A);
maps given by transducers are continuous.

We are particularly interested in automata for which this function is invertible, and the inverse
is also computed by a transducer. These transformations form a group of permutations of A%, which
are homeomorphisms of Cantor space, forming the rational group R, of Grigorchuk, Nekrashevych and
Suschanskii.

The starting point of our investigation concerned the outer automorphism groups of the Higman—
Thompson groups, the first infinite family of finitely presented infinite simple groups to be constructed
(the first such group was found by Richard Thompson, and the construction generalised by Graham
Higman). The crucial observation is that, roughly, the outer automorphisms are induced by transducers
which are bisynchronizing, that is, both the map and its inverse are given by transducers whose underlying
automata are strongly synchronizing.

In symbolic dynamics, it is common to consider the set A% of two-way infinite sequences of symbols
from a finite alphabet A. The shift map acts on AZ by moving each symbol one place left. An automorphism
of the shift is a permutation of A%? which commutes with the shift. One difficulty in studying such
automorphisms is in indexing the coordinates in a suitable way. Our recent work gives a representation
of automorphisms of the shift by bisynchronizing transducers with added structure called an annotation
which allows us to handle this problem.

In the talk I will attempt to give some account of all these matters.

Yekaterinburg-Online, Russia 10 August 24-30, 2020
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On Thompson’s conjecture for finite simple groups

Ilya Gorshkov
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
ilygor8@gmail.com

Consider a finite group G. For g € G, denote by g¢ the conjugacy class of G' containing g, and by |¢%|
the size of g&. Put N(G) = {|¢g%| | g € G} \ {1}. In 1987, John Thompson posed the following conjecture
concerning N(G).

Thompson’s Conjecture (see Kourovka Notebook, Question 12.38). If L is a finite simple
non-abelian group, G is a finite group with trivial center, and N(G) = N(L), then G ~ L.

Note that the same question can be formulated for an arbitrary finite group with the trivial center.

We say that the group L is recognizable by the set of conjugacy class sizes among finite groups
with trivial center (briefly recognizable) if the equality N(L) = N(G), where G is a finite group with a
trivial center, implies the isomorphism L ~ G. Since N(L) = N(L x Z(L)), the condition Z(L) = 1 is
essential. However, it is easy to show that S3 is recognizable. Thus, the condition of solvability is not a
necessary condition for the recognizability. As an example of a non-recognizable group, we can take a
Frobenius group of order 18. There exist two non-isomorphic Frobenius groups of order 18 with the same
sets of conjugacy class sizes. G. Navarro found two finite groups G and H with trivial center such that
N(G) = N(H), G is solvable and H is non-solvable. It is open the question on the existence of a finite
group L such that there exists an infinite set of pairwise non-isomorphic finite groups {G;,i € N} with
trivial center such that N(L) = N(G;). The set N(L) is closely connected with the order of the group
L, and sometimes precisely determines it, which essentially limits the possibilities for constructing an
infinite series of groups with a trivial center and the same set of conjugacy classes sizes.

We managed to prove the validity of Thompson’s conjecture and to prove the recognizability of some
non-simple groups.
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The Weisfeiler—Leman stabilization revisited from the viewpoint of Terwilliger algebras

Tatsuro Ito
Kanazawa University, Kanazawa, Japan and Anhui University, Hefei, China
tito@staff.kanazawa-u.ac.jp

Given a finite graph I', a coherent algebra is defined as the smalleast algebra that contains the
adjacency matrix of I' and is closed under both of the ordinary and the Hadamard products of matrices.
A coherent configuration arises from the coherent algebra as its combinatorial realization. In this way,
a coherent configuration is attached to a finite graph I' and we call it the coherent closure of T'. The
Weisfeiler-Leman stabilization is the algorithm to derive the coherent closure of T'.

What is important about the WL stabilization is the fact that the automorphism group of I' coinsides
with that of the coherent closure of I'. In fact, the WL stabilization was proposed in order to investigate
graph automorphisms. Historically speaking, the WL stabilizaiton appeared in the late 1960’s in the then
Soviet Union and reached the concept of coherent configurations. Note that the theory by D. G. Higman
of coherent confirurations was published in the early 1970’s. Along with the tragedy of Weisfeiler, the
details are known not much to us, perhaps except for Russian contemporary specialists in his field.

Given a finite connected graph I' and a fixed vertex of I', we can think of something like the
coherent closure. It was defined by Paul Terwilliger in his unpublished lecture notes and we call it
the Terwilliger algebra. So the Terwilliger algebra is closely related to the stabilizer of the fixed vertex
in the automorphism group of I'. Originally, the Terwilliger algebra was defined and deeply studied
for an association scheme, which falls into a subclass of coherent configurations, by Paul Terwilliger
in his monumental papers: The Subconstituent Algebra of an Association scheme I, 11, III, J. Algebraic
Combinatorics 1(1992), 363-388, 2(1993), 73-103, 177-210. In this talk, we first follow Terwilliger’s lecture
notes and consider the Terwilliger algebra of a finite connected graph. Then confining our targets to trees
and distance-regular graphs, we revisit the WL stabilization from the viewpoint of representations of
Terwilliger algebras.
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Densely embedded subgraphs in locally projective graphs

Alexander Ivanov
Imperial College London, London, UK
a.ivanov@imperial.ac.uk

I will discuss some aspects of the classification of tilde and Petersen geometries accomplishes by Sergey
Shpectorov and me some 20 years ago and put it in a more general setting.
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On strongly Deza graphs

Vladislav V. Kabanov
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
vvk@imm.uran.ru

This is joint work with Elena Konstantinova and Leonid Shalaginov

A Deza graph with parameters (n, k, b, a) is a k-regular graph on n vertices such that any two vertices
have b or a common neighbours, b > a [2].

The children G4 and G of a Deza graph G are defined on the vertex set of G such that every two
distinct vertices are adjacent in G 4 or G g if and only if they have a or b common neighbours, respectively.

We call a Deza graph with strongly regular children as a strongly Deza graph. Obviously, strongly Deza
graphs generalize divisible design graphs [3]. The following theorem is based on spectral relationships
between Deza graphs and their children found in [1].

Theorem 1. A Deza graph G is a strongly Deza graph if and only if G has at most three distinct
absolute values of its eigenvalues.

In our work we study properties and give some constructions of strongly Deza graphs [4].

Acknowledgement. The work is supported by Mathematical Center in Akademgorodok, the agreement
with Ministry of Science and High Education of the Russian Federation number 075-15-2019-1613.
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Efficient approximation of vehicle routing problems
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Michael Khachay
N. N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
mkhachay@imm.uran.ru

Most of the valuable problems in combinatorial optimization including the classic Traveling Salesman
Problem (TSP) and Vehicle Routing Problem (VRP) appear to be quite similar with respect to their
computational complexity and approximability by algorithms with theoretical performance guarantees.
Indeed, all these problems are strongly NP-hard and remain intractable even on the Euclidean plane.
Although, in general, all of them are hard to approximate in polynomial time and APX-complete in
arbitrary metric, their geometric settings admit quasi-polynomial or even polynomial-time approximation
schemes, i.e. all of them can be approximated efficiently within any given accuracy. Recent results in the
analysis of finite metric spaces shed a light on the design of approximation schemes for a wide family of
metric settings of these problems. In this presentation, we try to illustrate some of such approaches on
the example of the Capacitated Vehicle Routing Problem formulated in a metric space of an arbitrary
fixed doubling dimension.
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Dual Seidel switchings and integral graphs

Elena V. Konstantinova
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
e konsta@math.nsc.ru

In this talk recent results on integral graphs obtained by dual Seidel switching and generalised dual Seidel
switching are discussed. The talk is based on joint papers with S. V. Goryainov, H. Li, D. Zhao [1] and
V. V. Kabanov, L. V. Shalaginov [2].

A graph is integral if all eigenvalues of its adjacency matrix are integers. Dual Seidel switching is a
graph operation which can change the graph, however it does not change its bipartite double, and because
of this, the operation leaves the squares of the eigenvalues invariant. Thus, if a graph is integral then it is
still integral after dual Seidel switching. New infinite families of integral graphs obtained by dual Seidel
switching are given; in particular, new 4-regular integral graphs are presented [1].

In [2] a generalisation of the dual Seidel switching is used to have some constructions of Deza graphs
with strongly regular children. A Deza graph with strongly regular children is called a strongly Deza
graph. We discuss integral strongly Deza graphs. In particular, for a singular strongly Deza graph the
following result holds [3]. A graph is said to be singular if and only if zero is its eigenvalue.

Theorem. Any singular strongly Deza graph is an integral graph with four distinct eigenvalues.

Acknowledgement. The work is supported by Mathematical Center in Akademgorodok, the agreement
with Ministry of Science and High Education of the Russian Federation number 075-15-2019-1613.
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On the parameters of unrestricted completely regular codes

Denis Krotov
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
dskrotov@gmail.com

We discuss constructions of completely regular codes and proofs of their nonexistence for given
parameters, mainly focusing on unrestricted (not necessarily linear) binary completely regular codes
with covering radius at least 2.
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On second maximal subgroups of finite groups

Long Miao
Yangzhou University, Yangzhou, China
Imiao@yzu.edu.cn

1. The influence of generalized cover-avoidance property of subgroups on the
construction of solvable groups and p-solvable groups.

A subgroup A of a finite group G is called a C AP-subgroup of G if for every chief factor H/K of G,
we have HNA=KNAor HA = KA.

Based on classifications of second maximal subgroups by Flavell, we investigate the structure of
solvable groups by strong maximal subgroups having the cover-avoidance property or having the semi-
cover-avoidance property. We choose the appropriate set of some second maximal subgroups with cover-
avoidance property, obtain a necessary and sufficient condition to describe solvable groups.

Through further research, we obtain some characterizations for a solvable group (or a p-solvable group)
based on the assumption that some maximal subgroups or second maximal subgroups have the cover and
avoidance properties(or semi-p-cover and avoidance properties).

2. The influence of generalized cover-avoidance property of subgroups on the
construction of generalized p-solvable groups.

Corresponding to the classes of p-solvable groups, we define generalized p-solvable groups S, containing
every group G whose every chief factor H/K satisfies one of the following conditions: (1) H/K is a p-group;
(2) H/K is a p -group; (3) |H/K|, = p where H/K is nonsolvable.

In view of the definition and characteristics of generalized p-solvable groups and cover and avoidance
properties, we introduced the notion of generalized p-solvable cover-avoidance property. Let A be a
subgroup of G and H/K be a pd-chief factor of G. We will say that A have generalized p-solvable cover-
avoidance property, if either AH = AK or |[ANH: ANK|, <p.

In this talk, we introduce some characterizations for generalized p-solvable groups based on the
assumption that some maximal subgroups or second maximal subgroups have generalized p-solvable
cover-avoidance property.
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Subgroups like minimal parabolic subgroups
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Let p be a prime. Suppose that P is the set of minimal parabolic subgroups of a simple group G of
Lie type defined in characteristic p containing a fixed Sylow p-subgroup. For R € P, set L = (P \ {R}).
Then it is well known that O,(L) £ O,(R) and L # G.

More generally, a subgroup P of a group G is called p-minimal if P contains a Sylow p-subgroup S of
G and S is contained in a unique maximal subgroup of P. Let P(S) be the set of p-minimal subgroups
containing S. We say that R € P(S) is isolated provides L = (P \ {R}, Ng(S)) # G and O,(L) £ O,(R).
We ask, what can be said about groups with an isolated p-minimal subgroup?
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On the Weisfeiler—-Leman dimension of Paley graphs

Ilia Ponomarenko
Petersburg Department of V. A. Steklov Institute of Mathematics, Saint Petersburg, Russia
iliapon@gmail.com

It is proved that with finitely many possible exceptions, each cyclotomic scheme over a finite field is
determined up to isomorphism by the tensor of 2-dimensional intersection numbers; for infinitely many
schemes, this result cannot be improved. As a consequence, the Weisfeiler—-Leman dimension of a Paley
graph or tournament is at most 3 with possible exception of several small graphs.
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The University of Western Australia, Perth, Australia
cheryl.praeger@uwa.edu.au

This is joint work with Majid Arezoomand, Mohammadali Iranmanesh, and Gareth Tracey

A group G is said to be totally 2-closed if in each of its faithful permutation representations, say on
a set X, X is the largest permutation group on X which leaves invariant each of the G-orbits for the
induced action on ordered pairs from X.

This notion of 2-closure of a permutation group was introduced by Wielandt [1] in 1969. The stronger
concept of total 2-closure, suggested by Holt, is independent of the permutation representation of the
group. It was first explored by Abdollahi and Arezoomand [2] who showed that a finite nilpotent group
is totally 2-closed if and only if it is either cyclic, or a direct product of a generalised quaternion group
and a cyclic group of odd order. A more general study of total 2-closure was undertaken by Abdollahi,
Arezoomand and Tracey in [3]. They showed in particular that among the finite soluble groups, the only
totally 2-closed ones are nilpotent [3, Theorem BJ. In addition they showed that the Fitting subgroup of
a finite totally 2-closed group is itself totally 2-closed [3, Theorem A]. At the time of their writing the
paper [3], no examples of insoluble totally 2-closed groups were known. They studied the structure of an
insoluble example G of smallest order, showing that G modulo its cyclic centre has a unique minimal
normal subgroup which is nonabelian.

Thus we set out to find some finite insoluble totally 2-closed groups G. We focused on the case
where the Fitting subgroup is trivial, and showed first that such a group is a direct product of pairwise
non-isomorphic nonabelian simple groups.

In the light of this result, we decided that our first challenge should be to find all totally 2-closed
finite simple groups. The 2-closure condition seemed so strong that we initially believed that we would
find no examples. Surprisingly (to us) such groups do indeed exist, though we still believe they are rare.
We are still in the process of writing up our work, but we can report that, out of the 26 sporadic simple
groups, exactly SIX of them are totally 2-closed, namely the Janko groups Ji, J3 and Jy, together with
Ly, Th and the Monster M. Along the way we developed several tools for studying finite totally 2-closed
groups.
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Reduction theorems for relatively maximal subgroups
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revin@math.nsc.ru

Since its inception in the papers by E. Galois and C. Jordan, group theory has had the following as one
of its central problems. Given a group G, find its subgroups possessing a specific property or, equivalently,
belonging to a specific class X of groups (for example, solvable, nilpotent, abelian, p-groups, etc.). If X has
good properties resembling those of solvable groups then to solve the general problem it suffices to know
the so-called mazimal X-subgroups (or X-maximal subgroups), i.e. the maximal by inclusion subgroup
belonging to X.

Let X be a non-empty class of finite groups closed under taking subgroups, homomorphic images and
extensions. One of the main difficulties in studying X-maximal subgroups is that they behave irregularly
under homomorphisms: if X differs from the classes of all finite groups, the groups of order 1, and the
classes of all p-groups where p is a prime, then arbitrary finite group G in the image of an epimorphism
G* — @ from a finite group G* such that every (not only maximal) X-subgroup of G is the image of an
X-maximal subgroup of G*. On the other hand, if the kernel of a homomorphism is an X-group or does not
contain nontrivial X-subgroups then the image of each X-maximal subgroup is an X-maximal subgroup
in the image of the homomorphism and, moreover, there is a natural bijection between the conjugacy
classes of X-maximal subgroups in the domain and the image of the homomorphism. The main goal of the
reported study is to describe all homomorphisms under which the X-maximal subgroups “behave well”.

Denote by kx(G) the number of conjugacy classes of X-maximal subgroups of a finite group G.

Let N be a normal subgroup of a finite group G. We say that the reduction X-theorem holds for
the pair (G, N) if kx(G) = kx(G/N). It is easy to show that the reduction X-theorem (G, N) implies
that if H is an X-maximal subgroup of G then HN/N is an X-maximal subgroup of G/N and the map
H — HN/N induces a natural bijection between the conjugacy classes of X-maximal subgroups in G and
G/N.

We say that the reduction X-theorem holds for a finite group A if it holds for every pair (G, N) such
that N is a normal subgroup of G and N is isomorphic to A.

Theorem 1. Let X be a non-empty class of finite groups closed under taking subgroups, homomorphic
images and extensions. For a finite group G, the following statements are equivalent:

(i) The reduction X-theorem hold for G;
(i1) The X-mazimal subgroups of G are conjugate;
(t31) Every composition factor of G belongs to an explicitly given list.
Theorem 2. Let X be a non-empty class of finite groups closed under taking subgroups, homomorphic

images and extensions and let N be a normal subgroup of a finite group G. The following statements are
equivalent:

(i) The reduction X-theorem hold for the pair (G, N);
(i1) The reduction X-theorem hold for the group N.

Acknowledgement. The reported study was funded by RFBR and BRFBR, project number 20-51-
00007.
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On the widths of finite groups

Waujie Shi
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Let G be a finite group and e(G) (spectrum) the set of element orders in G. We call w,(G) = |(G)]
the width of order of G and w,(G) = maz{|w(k)||k € 7.(G)} the width of spectrum of G. We have
researched the case of ws(G) = 1, namely finite groups with elements of prime power orders. This paper
was published in Journal of Yunnan Education College, 1(1986) (in Chinese), also see arXiv: 2003.09445.
In this talk, we review this article, discuss some special cases of w,(G) and ws(G), and pose some new
problems.
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In 2007 Sakuma published a theorem classifying a class of vertex operator algebras (VOA) generated
by two Ising vectors. An Ising vector v is a conformal vector of weight 2; that is, v generates a Virasoro
sub VOA of central charge % This concept was introduced by Miyamoto who observed that, because the
fusion algebra for such a sub VOA is Z5-graded, this grading extends to the whole VOA and so each Ising
vector v to an automorphism 7, of order 2 called the Miyamoto involution.

In the most relevant example of the Moonshine VOA V%, whose automorphism group is the sporadic
finite simple group M, the Monster, and whose weight 2 component V = V2h is the Griess algebra used
to construct M, the Ising vectors are the same as Norton’s 2A4-axes and the Miyamoto involutions are
the same as the 24 involutions from M.

Sakuma Theorem states that VOAs generated by two Ising vectors are of eight types all represented as
sub VOA of V! and indexed by the classes of M whose elements are products of two 24 involutions: 2A4,
2B, 3A,3C,4A,4B,5A, and 6A. In 2010 Ivanov, Pasechnik, Seress, and Shpectorov generalised Sakuma’s
result to the class of Majorana algebras introduced by Ivanov in 2009. This was further generalised in
2015 by Hall, Rehren, and Shpectorov to a wider class of axial algebras with the fusion rules as in the
Griess algebra and additionally admitting a form associating with the algebra product. In the same year
Rehren attempted the ultimate generalisation dropping the form condition and allowing arbitrary « and
[ instead of the specific values i and 3% arising in the fusion rules for the Griess algebra. He obtained
an upper bound of eight on the dimension of the 2-generated algebra, provided that o # 25 or 45.

In the lecture we will discuss the recent results, joint with Franchi and Mainardis, in the general
program of classifying 2-generated algebras of Monster type («, 3). This includes the result for («, 8) =
(i, é), the classification of the generic case, where « and 3 are (algebraically independent) indeterminates,
the generic case with @ = 23, f an indeterminate, and the infinite dimensional example arising for
(o, 8) = (2, %) Note also that very recently Yabe completed the symmetric case; that is, where the
algebra admits an automorphism switching the two generating axes.
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Words separation and positive identities in symmetric groups

Arseny Shur
Ural Federal University, Yekaterinburg, Russia
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We study short positive (i.e., containing no inverses) identities of finite symmetric groups. The interest
in such identities is inspired by the problem of separating words with finite automata, in particular, with
the automata in which each letter acts on the set of states as a permutation.

The main problem is to estimate the asymptotic length of the shortest positive identity in the

symmetric group S,,. We present both theoretic and computer-assisted results towards the solution of
this problem.
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On axial algebras of Jordan type

Alexey Staroletov
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This is joint work with Ilya Gorshkov

The concept of axial algebras was introduced by Hall, Rehren, and Shpectorov [1]. These algebras are
commutative, nonassociative, and generated by idempotents. Axial algebras extend the class of Majorana
algebras, which were introduced as a part of Majorana theory by Ivanov [2]. The key motivational example
for both theories is the Griess algebra, which is a real commutative nonassociative algebra of dimension
196884 that has the Monster sporadic simple group as its automorphism group. It is known that this
algebra is generated by idempotents that correspond to involutions from the conjugacy class 2A of the
Monster.

Axial algebras of Jordan type n are generated by idempotents whose adjoint operators have the
minimal polynomial dividing (z — 1)z(xz — 1), where nn ¢ {0,1} is fixed, with restrictive multiplication
rules. These properties generalize the Peirce decompositions for idempotents in Jordan algebras, where %
is replaced with 7. In particular, Jordan algebras generated by idempotents are axial algebras of Jordan
type % Ifn# % then it is known that axial algebras of Jordan type 7 are factors of the so-called Matsuo
algebras corresponding to 3-transposition groups. We call the generating idempotents azres and say that
an axis is primitive if its adjoint operator has 1-dimensional 1-eigenspace. It is known that a subalgebra
generated by two primitive axes has dimension at most three. The 3-generated case has been opened so
far. In this talk, we discuss recent results on axial algebras of Jordan type generated by three primitive
axes [3].

Acknowledgement. The work is supported by Mathematical Center in Akademgorodok under
agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian
Federation.
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Yekaterinburg, Russia
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In the talk we consider Cayley graphs of groups as elements of the metric space & of connected locally
finite vertex-symmetric graphs (considered up to isomorphism; the distance between two non-isomorphic
graphs in & is 27" where r is the maximal radius of isomorphic balls of these graphs). In particular,
using a rather general method of constructing Cayley graphs with trivial vertex stabilizers, we give an
example of an infinite Cayley graph which is isolated in the space &. We also give examples of Cayley
graphs which are not isolated in this space but are isolated from the set of connected vertex-symmetric
finite graphs.
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Computational complexity of synchronization under regular constraints

Mikhail Volkov
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Many variations of synchronization of finite automata have been studied in the previous decades.
Here, we suggest studying the question if synchronizing words exist that belong to some fixed constraint
language, given by some partial finite automaton called constraint automaton. We show that this synchro-
nization problem becomes PSPACE-complete even for some constraint automata with two states and a
ternary alphabet.
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This is joint work with Yinfeng Zhu

For a digraph P, we say that a digraph homomorphism ¢ from G to H has the P-lifting property if
for any homomorphism 7 from P to H there exists a digraph homomorphism 7 such that 7 = ¢o~. A
digraph homomorphism is called path-liftable if it has the P-lifting property for all path digraphs P.

If H is a strongly connected digraph but not a cycle, we show that it is NP-complete to decide whether
or not a homomorphism from a digraph to H is path-liftable. For two strongly connected digraphs G and
H of the same spectral radius, we give a cubic time algorithm to test whether or not a homomorphism
from G to H is path-liftable. We show that a digraph homomorphism ¢ from an n-vertex digraph G to
another digraph is path-liftable if it has the P-lifting property for all path digraphs P of length at most
2" — 1. If G and H are two strongly connected digraphs such that |V(G)| = p|V(H)| for some prime
number p, we provide a characterization of all path-liftable digraph homomorphisms from G to H.
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Two projects in the representation theory of finite simple groups

Alexandre Zalesskii
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We discuss some regularities concerning the minimum polynomial degree and eigenvalue 1 of elements
of irreducible finite linear groups, mainly quasi-simple.

The minimum polynomial degree project aims to obtain a best possible extension of the Hall-Higman
theorem for p-solvable groups.

The eigenvalue project aims to determine the irreducible representations of finite simple groups in
which every group element has eigenvalue 1.

We shall give a short overview of these projects and state some recent results.
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On flag-transitive automorphism groups of 2-designs with ged(r,\) =1

Seyed Hassan Alavi
Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran
alavi.s.hassan@basu.ac.ir

The main aim of this talk is to present a classification of 2-designs with ged(r,\) = 1. In 1988,

Zieschang [11] proved that if an automorphism group of a 2-design with ged(r, A) = 1 is flag-transitive,
then it is point-primitive of almost simple or affine type. Such designs admitting an almost simple
automorphism group have been studied in [1-3,7-10]. The case where a 2-design with ged(r,\) = 1
admits an affine type automorphism group has been studied in [4-6]. In conclusion, all 2-designs with
ged(r, A) = 1 admitting flag-transitive automorphism groups are known except for those admitting one
dimensional affine type automorphism groups.
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On the extremal problems concerning some bond incident degree indices of graphs

Akbar Ali
Department of Mathematics, Faculty of Science University of Ha'il, Ha'il, Saudi Arabia
akbarali.maths@gmail.com

The bond incident degree (BID) indices of graphs are the graph invariants satisfying some constraints.
Many graph invariants that have found applications in chemistry are the BID indices. Finding graphs from
the specific classes of graphs with extremum values of certain graph invariants is one of the much studied
problems in chemical graph theory. In this talk, extremal results concerning some of the well-known
BID indices, namely the general zeroth-order Randié¢ index, general sum-connectivity index, symmetric
division deg index and the augmented Zagreb index, will be dispensed.
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Donovan’s conjecture and the classification of blocks

Cesare Giulio Ardito
City University of London, London, UK.
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Donovan’s conjecture predicts that given a p-group D there are only finitely many Morita equivalence
classes of blocks of group algebras with defect group D. While the conjecture is still open for a generic p-
group D, it has been proven in 2014 by Eaton, Kessar, Kiilshammer and Sambale when D is an elementary
abelian 2-group, and in 2018 by Eaton and Livesey when D is any abelian 2-group. The proof, however,
does not describe these equivalence classes explicitly.

A classification up to Morita equivalence over a complete discrete valuation ring O has been achieved
for D with rank 3 or less, and for D = (Cq)*.

I have done (C3)5, and I have partial results on (C2)°. In this talk I will introduce the topic, give the
relevant definitions and then describe the process of classifying this blocks, with a particular focus on the
methodology and the individual tools needed to achieve a complete classification.
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On the 486-vertex distance-regular graphs of Koolen—Riebeek and Soicher

Robert Bailey
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This is joint work with Daniel Hawtin (Rijeka)

In this talk, we consider three imprimitive distance-regular graphs with 486 vertices and diameter 4:
the Koolen—Riebeek graph (which is bipartite), the Soicher graph (which is antipodal), and the incidence
graph of a symmetric transversal design obtained from the affine geometry AG(5,3) (which is both). We
will show that each of these is preserved by the same rank-9 action of the group 3° : (2 x M), and the
connection is explained using the ternary Golay code.

Acknowledgement. This work was supported by NSERC Canada and the Croatian Science Foundation.
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Group Actions on Invariant Relations
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Group invariant relations have been an important tool in the study of permutations groups, see for
instance Wielandt’s Ohio State lecture notes [9]. Group invariant relations are equally important for the
constructive theory of combinatorial objects. In this talk, we will discuss examples of group invariant
relations and also point out ways to make use of these relations for designing algorithms to classify
combinatorial objects efficiently. By stacking many relations together, we can classify the orbits of a
group on a poset, which we call poset classification. This technique has been used by McKay [7] under
the name canonical augmentation. Partition backtrack (see Leon [6]) is yet another way to classify objects,
though it can be costly. The need for backtracking and canonical forms has been eliminated by work of
Schmalz [8], using a trade between time and memory. This has been used and refined by the author,
see [2]. Some applications of this new technique to the classification of cubic surfaces with 27 lines over
finite fields will be given [3]. Performance comparisons between some major systems (GAP [5], Magma [4],
Orbiter [1]) will be discussed as well.
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Finite groups with an affine map of large order
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Let G be a group. An affine map of G is a function G — G of the form g — ¢*t for a fixed
automorphism « and a fixed element ¢ of G. The affine maps of G form a permutation group on G known
as the holomorph of G, and they arise naturally both in theoretical and applied contexts. For example,
several of the infinite classes of finite primitive permutation groups listed in the celebrated O’Nan-Scott
theorem can be viewed as subgroups of holomorphs (more precisely, these are the classes HA, HS and HC
described in [4, Section 3]), and affine maps on abelian groups have been used as a simple yet effective
means of creating pseudorandom number sequences for a long time (for example in linear congruential
generators, described in [3, pp. 168fl.], or in vector generators, described in [3, pp. 205{f.]).

In this talk, we are concerned with finite groups G admitting an affine map of "large"order, say
at least p|G| for a fixed p € (0,1] — we note that an earlier result of the author, [1, Theorem 5.2.3],
implies that the order of an affine map of G cannot exceed |G|. This condition is loosely motivated by
pseudorandom number generation, where the permutations used to create pseudorandom sequences need
to have at least one "large"cycle (to avoid early repetitions in the sequence). Another earlier result of the
author, [1, Theorem 1.1.3(2)], states that in a finite group G with an affine map of order at least p|G|,
the largest solvable normal subgroup of G, the solvable radical Rad(G), has index at most p=5%! in G.
Here, we discuss recent results from the preprint [2], including the statement that the derived length of
Rad(G) is at most 4 - [logy(p~1) | + 3.

Acknowledgement. This work was supported by the Austrian Science Fund (FWF), project J4072-
N32 ("Affine maps on finite groups").
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Combinatorially defined point sets in finite projective planes
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This is joint work with Zsuzsa Weiner and Péter Sziklai

A (g+1t)-set K of type (0,2,t) is a point set of size ¢+ ¢ in a finite projective plane of order ¢ meeting
each line in 0, 2 or in ¢ points. Note that if £ # 2 then this means that through each point of K there passes
a unique line meeting X in ¢t points. For ¢ = 1 we get the owvals, for t = 2 the hyperovals; thus this concept
generalizes well-known objects of finite geometry. Such point sets were studied first by Korchmaros and
Mazzocca in 1990, see [3], that is why nowadays they are called KM-arcs. KM-arcs exist only for ¢ and ¢
even and they have been studied mostly in PG(2, g), the Desarguesian projective plane of order g, where
Gacs and Weiner proved that the t-secants (that is, lines meeting the KM-arc in ¢ points) are concurrent,
see [2]. Consider the following generalization:

A generalized KM-arc of type (0,m,t) is a point set S of a finite projective plane of order ¢ such that
each point @ of S is incident with a line meeting S in ¢ points and the other lines incident with @@ meet
S in m points. In [1] we proved the following characterisation of these objects:

Theorem 1. For a generalized KM-arc S of type (0,m,t) in PG(2,q), ¢ = p", p prime, either m =t =0
(mod p), or S is one of the following:

1) a set of ¢ collinear points (m = 1),

2) the union of m lines incident with a point P, minus P (¢t = gq),

3) anoval (t =1, m = 2),

(
(
(
(
(5) a unital (t =1, m = /g + 1),
(

)
)
)
4) a maximal arc with at most one of its points removed (¢t = m, ort =m — 1),
)
)

6) complement of a Baer subplane (t = ¢ — /g, m = q).

The proof relies on a stability result of Szényi and Weiner regarding & mod p multisets, see [4], and
on other polynomial techniques which ensure that in case of t Z m (mod p) the t-secants meeting a fixed
m-secant in S are concurrent.

I will also discuss some mod p generalizations and what happens if we weaken the conditions.

Acknowledgement. This work was supported by the UNKP-19-4 New National Excellence Program

of the Ministry for Innovation and Technology.
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Computation of various degree-based topological indices of the third type of triangular
Hex-derived network of dimension n by using M-polynomial

Shibsankar Das
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This is a joint work with Shikha Rai

A topological index is a numerical molecular descriptor that reports several physical properties,
biological activities and chemical reactivities of a molecular graph to understand its behaviour. In recent
studies, various degree-based topological indices of a molecular structure are calculated by deriving a
M-polynomial of that structure. In this talk, we derive the M-polynomial of the third type of triangular
Hex-derived network of dimension n and then estimate the corresponding degree-based topological indices.
In addition, we pictorially represent the M-polynomial and the related degree-based topological indices
for different dimensions.
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Gregarious Kite Factorization of Tensor Product of Complete Graphs
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This is joint work with A. Muthusamy

Partition of G into subgraphs G1, Gs, ..., G, such that E(G;)NE(G;) =0fori# j e {1,2,...,r} and
E(GQ) = U[_,E(G);) is called decomposition of G; In this case we write G as G =G1 ® G2 & ... ® G,
where @ denotes edge-disjoint sum of subgraphs. A spanning subgraph of G such that each component of
it is isomorphic to some graph H is called an H -factor of G. A Partition of G into edge-disjoint H-factors
is called an H-factorization of G.

A Fkite is a graph which is obtained by attaching an edge to a vertex of the triangle. We denote the
kite with edge set {ab, be, ca, ed} by (a, b, ¢; ed). A subgraph of a multipartite graph G is said to be
gregarious if each of its vertices lies in different partite sets of G. A kite factorization of a multipartite
graph is said to be gregarious if every kite in the factorization has all its vertices in different partite sets.

We show that there exists a gregarious kite factorization of K, x K, if and only if mn =0 (mod 4) and
(m—1)(n—1) =0 (mod 2), where x denotes the tensor product of graphs.

Acknowledgement. This work was supported by DST, New Delhi,Grant No. SR/ S4/ MS: 828/ 13.
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Graphs of diameter 2 and their diametral vertices

Tatiana Fedoryaeva
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia
ftiQmath.nsc.ru

In order to find the asymptotically exact value of the number of n-vertex graphs of fixed diameter
properties of typical graphs of the class [, 4=, of all n-vertex labeled graphs of diameter k are investigated
in [1-3]. It was proved that almost all n-vertex graphs of a given diameter & > 3 have a unique pair of
diametral vertices but for n-vertex graphs of diameter 2 such property is not valid. This prompted a
detailed investigation of more general properties of graphs of diameter 2 related to the number of pairs
of diametral vertices contained in the graph. In addition, the class 7, 4=2 has always been of particular
interest in view of, on the one hand, the apparent simplicity of its objects, on the other hand, the breadth
of its “coverage” of all graphs: it is well known that almost all graphs have a diameter 2. In this connection,
a more subtle classification of graphs of diameter 2 is interesting, when subclasses are distinguished that
form a partition of the entire class J,, 4=2. Moreover, for meaningful classification it is required that none
of the considered subclasses would not be poor and too rich, i.e. asymptotically did not coincide with
the whole class. At the same time, considering the "wealth" of the whole class 7, 4=2, apparently we
should not expect a good characterization of the selected subclasses, however, there is a natural problem
of describing or constructing a class of typical graphs inside each studied subclass in order to clarify the
structure of such graphs with a large number of vertices.

In the present talk the classification of graphs of diameter 2 by the number of pairs of diametral
vertices contained in the graph is designed. All possible values of the parameters n and k are established
for which there exists a n-vertex graph of diameter 2 that has exactly k pairs of diametral vertices. As
a corollary, the smallest order of these graphs is found. Such graphs with a large number of vertices are
also described and counted. In addition, for any fixed integer £ > 1 inside each distinguished class 7, 4=k
of n-vertex graphs of diameter 2 containing exactly k pairs of diametral vertices, a class of typical graphs
is constructed. For the introduced classes, the almost all property is studied for any k = k(n) with the
growth restriction under consideration, covering the case of a fixed integer £ > 1. As a consequence, it is
proved that it is impossible to limit the number of pairs of diametral vertices by a given fixed integer k
in order to obtain almost all graphs of diameter 2.

Teopema 1. Let k > 1. Then there exists a graph containing exactly k pairs of diametral vertices in the
class of n-vertex graphs of diameter 2 iff n > [0.5(3 + /1 + 8k)].

Teopema 2. Let k > 1 be any given integer. Then | Ty, g=k| = ((%)) for anyn >k +1.

Teopema 3. Let k > 1 be any fized integer. Then graphs isomorphic kKo + K, _op, for n # 2 form a
class of typical graphs of the class T, q=k-

Teopema 4. Let 0 < k < e(’;) for n — oo where € is fized constant and 0 < € < % Then almost all
n-vertex graphs of diameter 2 have at least k pairs diametral vertices.
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On the set related to the rank of a Sylow p-subgroup in finite groups

Zhichao Gao
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In this paper, we use the properties of Burnside basis of Sylow subgroups to study the structure of
finite groups. In particular, we get some results for p-supersolvable groups and p-Fitting subgroup.
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Groups generated by derangements
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Given a permutation group G we can study the subgroup D(G) generated by all the derangements in
G. In this talk I will discuss recent joint work with Rosemary Bailey, Peter Cameron and Gordon Royle
which studies D(G) and in particular bounds the index |G : D(G)| and looks at the structure of the
quotient group G/D(G).

Yekaterinburg-Online, Russia 43 August 24-30, 2020



Contributed Talks 2020 Ural Workshop on Group Theory and Combinatorics

Characterization of some finite G-graphs
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G-graph and Cayley graph have both nice and highly regular properties, but the G-graphs are not
always vertex-transitive. We try to characterize some finite G-graphs.
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This is joint work with Ivan Mitrofanov and Prof. Alexey Kanel-Belov

In this paper we investigate unipotent dymamics on a torus and apply it to the following problem. For
an integer k, consider a sequence of digits (a,), where a,, is the first digit in the decimal representation

of 2. How to find the number of subwords of (an) of a given length?

Acknowledgement. This work was supported by Russian science foundation grant Ne 17-11-01377.
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On distance-regular graphs with intersection array {7(n-1),6(n-2),4(n-4);1,6,28}
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There is an infinite sequence of formally self-dual classical distance-regular graphs I" with classical
parameters b =2, a =1, 3 =n—1,v =n3 (n > 5) (see, for example, [1]). If n is a power of 2, then there
exists a distance-regular graph I' with intersection array {7(n — 1),6(n — 2),4(n — 4); 1,6, 28} and each
distance-regular graph with these parameters is a bilinear forms graph.

K. Metsch [2] has proved that if a distance-regular graph with intersection array {7(n — 1),6(n —
2),4(n—4);1, 6,28} is not a bilinear forms graph, then n < 133. In this work, we improve the corresponding
estimation to n < 70 for an arbitrary distance-regular graph with intersection array {7(n — 1),6(n —
2),4(n —4);1,6,28}, and to n < 42, for geometric graphs.

Acknowledgement. The work is supported by Russian Science Foundation (project 19-71-10067).
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A joint work with Danil V. Kerkesner, Novosibirsk State University, d.kerkesner@g.nsu.ru

We consider the generalized Petersen graph G(n,2) and study its equitable partitions into 3 cells.
All partition matrices are enumerated for this case. For each matrix, we supply equitable partitions
implementing this matrix and obtain conditions necessary and sufficient for existing of such partitions.

The generalized Petersen graph G(n, k), k < n/2, is a graph with the vertex set V = {ug, u,..., un_1,
V0, V1, ..., Un—1} and edge set E = {w;u;y1,u;0;, 0,045 | 0 < ¢ < n — 1} where subscripts to be read
modulo n.

O—C0O—C0O—C0O—"0O—"0O—0O—0—=0
Figure 1: The generalized Petersen graph G(n,2)

Avgustinovich and Lisitsyna [1] described equitable partitions into 2 cells of some transitive cubic
graphs. Among other results they enumerated all partition matrices that the generalized Petersen graph
G(n,2) admits for its equitable partitions into 2 cells:

Alz(f ;) (n € N), AQZG 3) (3] n), Agz(g i’) | n).

In this talk we continue to study G(n,2) and discuss equitable partitions of its vertex set into 3 cells.

A partition P = {Cy,C4,...,Cp_1} of the vertex set V is equitable if for every pair of (not necessarily
distinct) indices 4, j € {0,1,...,¢ — 1} there is an integer a;; > 0 such that each vertex w in the cell C;
has exactly a;; neighbors in C;. The matrix A = (a,;) is called the partition matriz.

It is easy to see that the vertex transform ¢: w; — u;y1, v; — v;41 is an automorphism of the graph
G(n, k). In this way, we call the partition P to be periodic if there is a period T € N such that ¢ (P) = P,
i. e., T (C;) = C; for each i € {0,1,...,¢—1}.

Theorem 1. An arbitrary equitable partition of the generalized Petersen graph G(n,2) into 3 cells
has one of the following partition matrices:

2 1 0 1 20 0 3 0 0 1 2 11 1
Mi=(2 0 1), My=[1 0 2|, Ms=[1 1 1), My={1 1 1|, Ms=(1 1 1}.
0 30 02 1 030 2 1 0 111

Theorem 2. For the generalized Petersen graph G' = G(n,2) the following statements hold.
(1) G admits an equitable partition with the matrix M € {My, M} iff n is a multiple of 5.
(2) G admits an equitable partition with the matrix Ms iff n is a multiple of 10.

(3) G admits an equitable partition with the matrix M € {My, M5} iff n is a multiple of 3.

Acknowledgement. This research is supported by the Russian Foundation for Basic Research
(Project 19-01-00682) and Mathematical Center in Akademgorodok under Agreement 075-15-2019-1675
with the Ministry of Science and Higher Education of the Russian Federation.
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This is joint work with Natalia Maslova

We use mainly standard notation and terminology (see [1]). Let G be a finite group. Denote by 7(G)
the set of all prime divisors of the order of G and by w(G) the spectrum of G, i.e., the set of all its element
orders. The set w(G) defines the Gruenberg-Kegel graph (or the prime graph) T'(G) of G; in this simple
graph the vertex set is 7(G), and distinct vertices p and ¢ are adjacent if and only if pg € w(G).

The problem of description of the cases when Gruenberg-Kegel graphs of non-isomorphic finite groups
coincide naturally arises. One of the most interesting cases of this problem is when Gruenberg—Kegel
graphs of non-isomorphic finite groups are both disconnected and coincide.

Recall some known definitions. A finite group G is a Frobenius group if there is a non-trivial proper
subgroup C of G such that C N gCg~! = {1} whenever g & C. A subgroup C is called a Frobenius
complement of G. Let K = {1} U (G \ UgeG gCg~1). Then K is a normal subgroup of a Frobenius group
G with a Frobenius complement C' which is called the Frobenius kernel of G. A finite group G is a 2-
Frobenius group if G = ABC, where A and AB are normal subgroups of G, AB and BC are Frobenius
groups with kernels A and B and complements B and C, respectively. It is known that each 2-Frobenius
group is solvable. The socle Soc(G) of a finite group G is the subgroup of G generated by all its non-
trivial minimal normal subgroups. A finite group G is almost simple if Soc(G) is a finite non-abelian
simple group.

By the Gruenberg—Kegel Theorem, if G is a finite group with disconnected Gruenberg-Kegel graph,
then either G is a Frobenius group or either G is a 2-Frobenius group or G is an extension of a nilpotent
group by an almost simple group. In [2], all the cases of coincidence of Gruenberg-Kegel graphs of a
finite simple group and of a Frobenius or a 2-Frobenius group were described. Moreover, we can obtain
the complete list of almost simple groups whose Gruenberg-Kegel graphs coincide with Gruenberg-Kegel
graphs of solvable Frobenius groups or 2-Frobenius groups directly from the main results of the papers [3]
and [4].

In this talk, we concentrate on obtaining a list of almost simple (but not simple) finite groups whose
Gruenberg-Kegel graphs coincide with Gruenberg-Kegel graphs of non-solvable Frobenius groups. We
prove the following
Theorem. Let G be an almost simple but not simple finite group. If T'(G) = I'(H), where H is a non-
solvable Frobenius group, then one of the following statements holds:

(1) G is isomorphic to one of the groups Aut(Mi2), Sz, 2Fy(2), Aut(PSU4(2)), L3(4).23, PSLs(3).22,
PSL4(3).23, PSLy(11).2 = PGLy(11), PSL2(19).2 = PGLy(19), PSL5(49).2y = PGLy(49),
PSL2(25)22, PSL2(81)21, PSL2(81)41, or PSL2(81)42,

(2) Soc(G) € {PSLs(q), PSUs(q)}-

Acknowledgement. This work was supported by the Russian Science Foundation (project 19-71-
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This is a joint work with Thomas Breuer and Erzsébet Horvith

The notion of depth was originally defined for von-Neumann algebras, see [2]. Later it was also defined
for Hopf algebras, see [8]. For some recent results in this direction, see [3-5]. In [7] and later in [1], the
depth of semisimple algebra inclusions was studied, by Burciu, Kadison and Kiilshammer. First results
were considering the depth 2 case, later it was generalized for arbitrary n. In the case of group algebra
inclusion CH C CG it was shown that the depth is at most 2 if and only if H is normal in G, see [7]. It is
shown in [1] that the depth of the symmetric group S, in Sp41 is 2n — 1. We show that for each positive
integer n, there exist a group G and a subgroup H such that the ordinary depth is d(H,G) = 2n. This
solves the open problem posed by Lars Kadison (see [6]) whether even ordinary depth larger than 6 can
occur.
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In 1960 Greenberg [2] proved that every countable group A is isomorphic to the automorphism group of a
Riemann surface S, and in 1973 he proved that if A is finite then S can be chosen to be compact [3]. The
proofs are long, complicated and not constructive. In response to a question by Sasha Mednykh, I will give
a short and explicit algebraic proof of Greenberg’s Theorems for finitely generated groups A, using results
of Macbeath [5], Singerman [7] and Takeuchi [8] on triangle groups, and of Margulis [6] on arithmeticity.
In each case, S = H/M where H is the hyperbolic plane and M (= mS) is an explicit subgroup of a
triangle group acting on H. When A is finite it follows from this and from Bely?’s Theorem [1]| that S can
be defined, as a complex algebraic curve, over an algebraic number field. For full details, see [4].
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One of the fundamental problems of group theory is the study of the subgroup structure of a given
group. In the post-classification period, investigating subgroups and representations of finite simple groups
has become an actual problem. The important class of permutation representations of finite groups of
Lie type is given by its parabolic representations, i.e., the representations on the cosets of parabolic
subgroups. In our previous works, we obtained a description for the primitive parabolic permutation
representations of all groups of Lie type (normal and twisted).

The author continues to study the properties of these representations, namely, the chief factors of
parabolic maximal subgroups in finite simple groups of Lie type are studied.

Let G be a finite simple group of Lie type over a finite field K of characteristic p and let P = UL be
a parabolic maximal subgroup in G, where U is the unipotent radical and L is the Levi complement in
P. Suppose that p # 2 for the groups G of type B, C;, or Fy and p > 3 for the groups G of type Gs.
Then the results of [1] imply that the factors of the lower central series of U are chief factors of P and
irreducible K L-modules. The number of these factors is independent of the field K but depends on the
Lie type of G. In the exceptional cases, the commutator relations influencing the structure of unipotent
subgroups behave in a special way and require special consideration.

In the previous papers [2]- [7], the author obtained a refined description of chief factors of parabolic
maximal subgroups involving in the unipotent radical for all groups of Lie type, except for the groups
B;(2"™) =2 Cy(2™).

In the present work, such description for B;(2") is given. It is proved a theorem, in which, for every
parabolic maximal subgroup of the group B;(2"), a fragment of its chief series that involves in the
unipotent radical of this parabolic subgroup is given. Generating elements of the corresponding chief
factors are presented in a table.
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Boris Kunyavskii
Bar-Ilan University, Ramat Gan, Israel
kunyav@gmail.com

Given a group G, one can look at its conjugation action on itself, consider the first (nonabelian)
cohomology set H!(G, G), and define the Shafarevich-Tate set II1(G) as the subset of H! (G, G) consisting
of the cohomology classes becoming trivial after restriction to every cyclic subgroup C C G [6].

If G is finite, I11(G) is a finite group. It coincides with the group Out.(G) = Aut.(G)/Inn(G) of outer
class-preserving automorphisms of G, introduced more than 100 years ago by Burnside [2].

For a finite group G, one can consider the Schur multiplier H2(G,Q/Z) and define the Bogomolov
multiplier B(G) as the subset of H?(G,Q/Z) consisting of the cohomology classes becoming trivial after
restriction to every bicyclic subgroup A C G [1]. One can extend this definition to the case of infinite
groups [1], [5].

Various properties of these invariants are discussed in [3], [4]. We will give a brief survey of some recent
developments, including interrelations between the two invariants and their Lie-algebraic analogues.
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Let I" be a distance-regular graph of diameter 4. If I'; 4 is a strongly regular graph then to determine
the intersection array of I' by parameters of I's 4 is an inverse problem.

Known examples of primitive graphs are the following (see [1]).

1. 0dd graph I" = Oy has intersection array {5,4,4, 3;1,1,2, 2} and I's 4 has parameters (126,100,78,84).

2. Folded 9-cube T" has intersection array {9, 8,7,6;1,2,3,4} and I's 4 has parameters (256,210,170,182).

3. Dual polar graph I' has intersection array {30,28,24,16;1,3,7,15} and I's 4 has parameters
(2295,1984,1708,1860).

The exists the unique bipartite antipodal distance-regular graph I' with strongly regular graph I's 4
(see p. 425 in [1]):

4. 4-cube T has intersection array {4,3,2,1;1,2,3,4} and I's 4 has parameters (16,5,0,2).

Theorem 1 [2]. Let I' be an antipodal distance-regular graph of diameter 4 with strongly regular
graph A =T'34. Then A(A) =0, by = k(A) — 1, co = a1 + 2 = p(A) and by = k(A) — p(A).

In this talk, we discuss small antipodal distance-regular graphs I' of diameter 4.

Theorem 2. Let a distance-regular graph with intersection array {56,45,24(r—1)/r,1;1,24/r,27,32},
r €{2,3,4,6,8} exists. Then r = 3.

Theorem 3. If a distance-regular graph I" with intersection array {96, 75,32(r—1)/r,1;1,32/r,75,96}
exists, then » = 2, T is not a locally GQ(5, 3)-graph, and the group G = Aut(T") acts intrasitively on the
set of antipodal classes of T.
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This is joint work with Marina Sorokina

Only finite groups are considered. In the theory of the classes of finite groups, much attention has been
paid to the research of the lattice properties of the classes. Nowadays many important properties of the
lattices of local and w-local formations and Fitting classes have been established (see, for instance, 1], [2]).
An w-local formation is one of the types of w-fibered formations (see [3]). In the theorems 1 — 3, we have
obtained some properties of the lattice of w-fibered formations with the definite direction .

We use standard definitions and notations for groups, classes of groups, and lattices (see, for instance,
[1], [4]). Let m be a non-empty subset of the set P of all primes. Recall that a group G is w-solvable if
|7(H/K)| =1 for every chief wd-factor H/K of G; m-selected if |7(H/K) N 7| < 1 for every chief factor
H/K of G [5]. The classes of all identity groups, all p-groups and all p’-groups for p € PP are denoted by
(1), M, and €&,/, respectively. Let w be a non-empty subset of the set P, f : w U {w'} — {formations of
groups} be an wF-function, § : P — {non-empty Fitting formations} be a PF R-function. A formation
WE(f,0) = (G : G/O4(G) € f(w') with G/Gsqy € f(p) for all p € wN7(G)) (Ou(G) and Gy are the
largest normal w-subgroup of the group G and the §(p)-radical of G, respectively) is called an w-fibered
formation with the d irection § (see [3]. By dp, we denote the PF R-function such that dy(p) = &, for
every p € P. A PFR-function ¢ is called b-direction if 6(p)0, = d(p) for every p € P; § is called s-direction
if §(p) is a p-solvable class for every p € P (see [6]). Denote by ©,5 the set of all w-fibered formations with
the direction J, by ©,,s(F) the set of all w-fibered subformations with the direction ¢ of the formation §.
It has been well known that, in the case dy < 4, the sets O, and O,,5(F) are the lattices.

Theorem 1. Let § be a b-direction, §g < 8, and suppose that (1) # § € Oys. Then |O,s5(F)| = 2 if and
only if § is an w-fibered formation generated by the simple w-solvable group.

Theorem 2. Let § be a b-direction, §g < 6, and let § be an w-fibered formation with the direction §
generated by the simple w-selected group. Then |©,5(F)| < 3.

Theorem 3. Let § be an one-generated w-fibered formation with the direction §, 69 < 6. The lattice
Ous(F) has finite number of atoms if at least one of the following conditions is satisfied:

(1) § is an w-solvable class;

(2) d is an s-direction.

These theorems imply the results for such types of w-fibered formations as w-local, w-special, w-central
formations.
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M. Liebeck and J. Saxl [4] and, independently, W. Kantor [2] proposed a classification of finite primitive
permutation groups of odd degree. Both papers [4] and [2] contain lists of subgroups of finite almost simple
groups that can turn out to be maximal subgroups of odd index. However, in the case when the socle
of an almost simple group is an alternating group or a classical group over a field of odd characteristic,
neither in [4] nor in [2] it was described which of the specified subgroups are precisely maximal subgroups
of odd index. Thus, the problem of the complete classification of maximal subgroups of odd index in finite
almost simple groups remained open.

For alternating and symmetric groups, we completed the classification in [6]. For simple classical
groups over fields of odd characteristics, the classification was completed in [5]. For almost simple groups
with classical socle of dimension at least 13, the classification was completed in [7,8]. In [5] we used
results obtained by P. Kleidman in [3]. However there is a number of mistakes and inaccuracies in [3].
These mistakes and inaccuracies were corrected in [1]. In [9], we revised of the classification of maximal
subgroups of odd index in finite simple classical groups obtained in [5]. Recently, we have completed the
classification of maximal subgroups of odd index in almost simple groups with classical socle of degree
at most 12 over a field of odd characteristict. Thus, the classification of maximal subgroups of odd index
in almost simple groups with classical socle is complete. In this talk, we discuss these results as well as
some applications of the complete classification of maximal subgroups of odd index in finite almost simple
groups.
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This is joint work with Anatoly Kondrat’ev

We use mainly standard notation and terminology (see [1]).

Let G be a finite group. Denote by m(G) the set of all prime divisors of the order of G. The Gruenberg—
Kegel graph (or the prime graph) I'(G) of G is a graph with the vertex set 7(G), in which two distinct
vertices p and ¢ are adjacent if and only if there exists an element of order pg in G.

A.S. Kondrat’ev described finite groups with the same Gruenberg-Kegel graph as the groups Aut(Js)
[2] and Ajq [3], respectively. The Gruenberg—Kegel graphs of all these groups are isomorphic as abstract
graphs to the paw having the following form:

We establish a more general problem: to describe finite groups whose Gruenberg-Kegel graphs are
isomorphic as abstract graphs to the paw.

As a part of the solution of this problem, we have proved in [4] that if G is a finite non-solvable group
and the graph I'(G) as abstract graph is isomorphic to paw, then the quotient group G/S(G) (where
S(G) is the solvable radical of G) is almost simple, and classified all finite almost simple groups whose
the Gruenberg-Kegel graphs as abstract graphs are isomorphic to subgraphs of the paw.

In the talk we discuss some new our results on this problem.
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Any Schur ring, an algebraic structure closely related to association schemes, is uniquely determined
by a partition of the elements of the group. An open question in the study of Schur rings is determining
which partitions of the group induce a Schur ring. Although a structure theorem is available for Schur
rings over cyclic groups, it is still a difficult problem to count all the partitions. For example, Kov6cs,
Liskovets, and Prgschel determine formulas to count the number of wreath-indecomposable Schur rings.
In this talk we solve the problem of counting the number of all Schur rings over cyclic groups for various
orders and draw some parallels with Higman’s PORC conjecture.
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Ivan Mogilnykh
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Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
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This is joint work with Faina I. Solov’eva

The vector space of dimension n over GF(2) is denoted by F™. Consider the transformation (z,7),
where x € F™ and 7 is a permutation of the positions of F™ that maps a binary vector y as (x,7)(y) =
2+ 7(y). The automorphism group Aut(F™) of F™ w.r.t. Hamming metric is defined as the group of all
such transformations (z,7) with respect to the composition. Codes C' and D are isomorphic if there are
x € F" and 7 € S,, such that x +7(C) = D. The automorphism group Aut(C') of a code C is the setwise
stabilizer of C' in Aut(F™). A code C is transitive if Aut(C) acts transitively on the set of its codewords.

Gillespie and Praeger [1] suggested the following concept. A code C' is called k-neighbor transitive if
for any i, 0 < i < k, Aut(C) acts transitively on C;, where C; is the set of words at distance exactly i
from C. The extended Hamming code is 2-neighbor transitive and the Mollard construction [2] applied
to 1-neighbor transitive extended perfect codes gives a 1-neighbor transitive extended perfect code.

The general affine group GA(r,2) of the vector space F'" consists of mappings that could be represented
by all pairs (a, M): (a, M)(b) = a + Mb for a vector a € F", M € GL(r,2). A subgroup G of GA(r,2)
is called regular if it is regular with respect to this action. By the definition for any regular subgroup of
GA(r,2) and any a € F" there is a unique affine transformation from G that maps the all-zero vector
0 to a, which we denote by g,. Let T' be an automorphism of a regular subgroup of GA(r,2). By 7 we
denote the permutation on the vectors of F'" induced by the automorphism 7, i.e. T'(g4) = g7 (a)-

Main construction. Let the coordinates of F2" be indexed by the vectors of F”. Define an extended
Hamming code of length 2" as follows: H = {z € F? : Doaerrip,=14 = 0,3 cq1 oy @i = 0} Let ulv
denote the concatenation of vectors v and v. Consider a version of the Solov’eva construction [4]:

S, = U (h+ea+eg)|(h’—|—e,r(a) —l—eT(O)).
a€FT h,h'eH

Theorem. 1. Let 7 be the permutation induced by an automorphism of a regular subgroup of GA(r, 2).
Then S; is a transitive binary extended perfect code.

2. Transitive codes S; and S/ are isomorphic iff their sets of codewords of weight 4 are isomorphic.

3. For any r > 3, r # 5 there is a non-Mollard 1-neighbor transitive code S; of length 27+1,

Some of the above results were published in [3].

Acknowledgement. This work was supported by the Ministry of Science and Higher Education of
Russia (agreement No. 075-02-2020-1479/1).
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This is a joint work with Sergio Camp-Mora, Universitat Politecnica de Valéncia

It is well-known that if a group has a family of subgroups satisfying the same property then one can
grasp several information about the structure of the whole group (see for example [3,4]). For instance,
in a group of infinite rank the family of all subgroups of infinite rank has a strong influence on the
group itself as showed in [1] and [2]. Recall that a group G has finite rank p(G) = r if every finitely
generated subgroup of G can be generated by at most r elements and r is the least positive integer with
this property. If such an integer r does not exist, then we say that G has infinite rank.

The property we are mainly interested in is the complementation. We say that a subgroup H of a
group G is complemented in G if there exists a subgroup K of G such that G = HK and HNK = 1. The
subgroup K is called a complement of H in G. In [5] Hall proved that a finite group has every subgroup
complemented if and only if it is supersoluble with elementary abelian Sylow subgroups.

The aim of this talk is to deal with some classes of infinite groups. Indeed, we will characterize two
families of infinite groups in which some classes of subgroups are complemented, facing in particular the
case of infinite rank groups.

Acknowledgement. This work was supported by the “National Group for Algebraic and Geometric
Structures, and their Applications" (GNSAGA - INdAM).
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This is joint work with Jack Koolen

The McLaughlin graph I is the unique strongly regular graph with parameters (275,162, 106, 81). Its
automorphism group contains the sporadic finite simple group McL (see [3]) as a subgroup of index 2.
The switching class of the graph A = K; UT is a regular two-graph on 276 vertices, whose uniqueness
was shown by Goethals and Seidel [1].

The vertices of the graph A can be represented by a set of norm 3 vectors in R?4, where two vertices
are adjacent (resp. non-adjacent) if and only if the corresponding inner product is 1 (resp. 0). If we
augment the lattice generated by these vectors by adding a root r in such a way that all vertices lie in
the hyperplane {z € R?** | (r,x) = 1}, then this lattice L not only represents A but all graphs in its
switching class.

While it is known that there are a number of strongly regular graphs with parameters (276, 140, 58, 84)
contained in this switching class (see [2,4]), we would like to show that some graphs have a distinguished
property which none of the regular graphs in the switching class has. The remarkable property we noticed
is that the sublattice generated by the vertices of a graph is a proper sublattice of L. Except the graph A,
if a graph in the switching class generates a proper sublattice of L, then it is of index 2. Our classification
reveals that there are exactly four such graphs, none of which is regular.

Acknowledgement. This work was supported by RaCMAS, Tohoku University.
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This is joint work with A. Thillaisundaram

Groups of automorphisms of regular rooted trees have been studied for years as an important source
of groups with interesting properties. For example, the Grigorchuk groups provide a family of groups with
intermediate word growth and the torsion Grigorchuk groups constitute a counterexample to the General
Burnside Problem. For these groups there is a natural family of normal subgroups of finite index, which
are the level stabilizers. The goal of this talk is to show that the quotients by such subgroups admit a
ramification structure. Roughly speaking, groups of surfaces isogenous to a higher product of curves are
characterised by the existence of a ramification structure. Recall that an algebraic surface S is isogenous
to a higher product of curves if it is isomorphic to (C; x C3)/G, where Cy and C5 are curves of genus at
least 2, and G is a finite group acting freely on C; x Cj.

In this talk, we first introduce the Grigorchuk groups and then we show that their quotients admit
ramification structures, providing the first explicit infinite family of 3-generated finite 2-groups with
ramification structures that are not Beauville.
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The number of chains of subgroups for certain finite symmetric groups
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This is joint work with Amit Seghal, Department of Mathematics, Pt. Neki Ram Sharma Government
College, Rohtak, India and Michael EniOluwafe, Department of Mathematics, University of Ibadan,
Nigeria

Throughout this paper, all groups are assumed to be finite. The lattice of subgroups of a given group
G is the lattice (L(G), <) where L(G) is the set of all subgroups of G and the partial order < is the set
inclusion. The study of chains of subgroups in this paper describes the set of all chains of subgroups of G
that end in G which is used to solve many computational problems in fuzzy group theory. Tarnduceanu,
and Bentea [5] gave an explicit formula for the number of chains of subgroups in the lattice of a finite cyclic
group by finding its generating function of one variable. The problem of counting chains of subgroups
of a given group G has received attention by researchers with related to classifying fuzzy subgroups of
G under a certain type of equivalence relation (see [1] [2], [3], [4] , [6]). In this paper, we determined
the number of chains of subgroups in the subgroup lattice of a certain finite symmetric groups using
computational technique induced by isomorphism classes of subgroups of G with respect to this natural
equivalence relation. This work also showed that fuzzy subgroup is simply a chain of subgroups in the
lattice of subgroups.
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This is joint work with Milagros Arroyo-Jordd, Paz Arroyo-Jordd (Universitat Politecnica de Valencia),
Rex Dark (National University of Ireland), Arnold D. Feldman (Franklin and Marshall College, U.S.A.)

All groups considered are finite. We present an extension of the theory of finite soluble groups to the
universe of m-separable groups, 7 a set of primes, i.e. finite groups each of whose composition factors is
either a w-group or a m’-group, where 7’ stands for the complement of 7 in the set of all prime numbers.
Classical results of Hall theory state that soluble groups are characterized by the existence of Hall p-
subgroups for all sets of primes p (P. Hall [5,6]). When the set of primes 7 is fixed, m-separable groups
have Hall m-subgroups, and also every m-subgroup is contained in a conjugate of any Hall 7-subgroup (S. A.
Cunihin [3]). We analyze the reach of m-separability further from soluble groups, by means of complement
and Sylow bases and Hall systems, based on this remarkable property of w-separable groups. We also show
that m-separable groups have a conjugacy class of subgroups which specialize to Carter subgroups, i.e.
self-normalizing nilpotent subgroups, or equivalently, nilpotent projectors, when specializing to soluble
groups. These Carter-like subgroups enable an extension of the existence and conjugacy of injectors,
associated to Fitting classes with adequate stronger closure properties, to w-separable groups, in the
spirit of the role of Carter subgroups in the theory of soluble groups.

Acknowledgement. This work was supported by Proyectos PROMETEO/2017/ 057 from the Generalitat
Valenciana (Valencian Community, Spain), PGC2018-096872-B-100 from the Ministerio de Ciencia, Innovacién
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Automorphisms of affine surfaces and the Thompson group T
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We describe the correspondence between the unit circle and the divisor at infinity for some affine algebraic
surfaces, which induces the correspondence between the Thompson group T and the automorphism
groups of considered surfaces. In particular, we introduce surfaces of Markov type and describe their
automorphism groups. Finally, we raise the question about integer point orbits on these surfaces. The
answer to it might be useful in studying the Uniqueness conjecture for Markov numbers.
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Ural Federal University, Yekaterinburg, Russia
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The problem of representation of lattices by subgroup lattices occupies a prominent place in the aspect
of representation of lattices by derived lattices of one kind or another. One of the most striking result here
is due to Ph. M. Whitman [2] and states that every lattice can be embedded in the subgroup lattice of
some group. For a given class K of groups, we say that K is lattice-universal if every lattice is embeddable
in the subgroup lattice of some group from K. In this sense the class of all groups is lattice-universal.

The author proved in [1] that the class of free Burnside groups satisfying the identity z* = 1, where
k is odd and k > 665, is also lattice universal. In connection with this result the following question
arises: which are natural classes of locally finite groups satisfying the condition of lattice universality?
The following theorem gives us one of such important classes.

A lattice is called algebraic if it is complete and its every element is a join of compact elements.

If a lattice L is complete and a subset M of L has the property that \/S, AS € M for every nonempty
subset S C M, then M is called a complete sublattice of L. It is well known that a complete sublattice of
the subgroup lattice of a any group is algebraic.

Theorem. Let K be an abstract class of groups satisfying the following conditions:
(1) K contains a two-element group;

(2) K is closed under restricted direct products, semidirect products and direct limits over totally
ordered sets.

Then every algebraic lattice is isomorphic to a complete sublattice in the subgroup lattice of some group
in K.

It should be noted that the class of all locally finite 2-groups satisfies conditions (1), (2) of the theorem.
So we get the following corollary.

Corollary 1. Every algebraic lattice is isomorphic to a complete sublattice in the subgroup lattice of
a suitable locally finite 2-group.

Since every lattice can be embedded in some algebraic lattice, namely, in the lattice of its ideals, we
obtain the following statement.

Corollary 2. The class of all locally finite 2-groups is lattice-universal.
In particular, from here we obtain that the class of all locally nilpotent torsion groups is lattice-

universal.
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On enumeration of finite topologies
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The work continues the study of the numbers W (p1, ..., py), defined in [1] and appearing in [2-4]. By
Vo(X) we denote the collection of all partial orders, defined on the set X ={1,...,n}, n € N. There is
a one-to-one correspondence between the set Vo(X) and the set VJ(X) of all labeled transitive digraphs,
defined on X; in addition, there is a one-to-one correspondence between Vy(X) and the set To(X) of all
labeled Tp-topologies, defined on X. Let Ty(n) = card To(X).

Obviously, Ty(n) = card Vo (X) = card VJ(X). In [1] are proved a formula

_ n!
TO(”) = Z (71)’”4 . | | W(pla"'vpk)v
pit..APe=n P1t.--Pr:
reducing the counting of Ty(n) to the calculation of numbers W (py, ..., px) of partial orders of a special
kind. Summation is performed over all partitions (p1,...,px) of the number n into natural terms.
In [1-3] received three families of relationship equations between individual numbers W(p, ..., k).

12 .kfm)? (1 2 k=1 k) then

So, if Dy is the dihedral group generated by the permutations ( 5s k1 PP
according to [1] we have equalities
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In [2] and [3] the recurrence formulas are proved accordingly (for integer p > 0, ¢ > 0, m > 1):
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Relations allow calculating the numbers Ty(n) for all n < 8 (without using a computer, only by solving
system (1)—(3)). For calculating the number T5(9) these relations are not enough.
In [5] five new relationship equations are obtained between individual numbers W (py, ..., pk).
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This is a joint work with A /Prof. Heiko Dietrich, Monash University, Australia

Classification of groups up to isomorphism is one of the main themes in group theory. A particular
challenge is to understand finite p-groups, that is, groups of p-power order for a prime p. Since a
classification of p-groups by order seems out of reach [1] for large exponents n, other invariants of
groups have been used to attempt a classification; a particularly intriguing invariant is coclass which
was introduced in 1980 by Leedham-Green and Newman [2]. Since then coclass theory has delivered
significant insight into the structure of the p-groups of a fixed coclass.

A finite p-group of order p™ and nilpotency class ¢ has coclass r = n — c¢. Recent work in coclass
theory is often concerned with the study of the coclass graph G(p,r) associated with the finite p-groups
of coclass r. The vertices of the coclass graph G(p,r) are (isomorphism type representatives of) the finite
p-groups of coclass r, and there is an edge G — H if and only if G is isomorphic to H/v(H) where v(H)
is the last non-trivial term of the lower central series of H. It is known [3,4] that one of the feasible
approaches for investigating G(p,r) is to first focus on so-called skeleton groups. This is mainly because
of the fact [5] that almost every group in the graph G(p,r) is close to a skeleton group and thus skeleton
groups determine the general structure of coclass graphs.

We introduced a systematic treatment of the skeleton groups of any coclass in [5] based on ‘constructible
groups’ given by Leedham-Green [6]. For odd p, let S be an infinite pro-p group and informally skeleton
groups can be described as twisted finite quotients of S, where the twisting is induced by some suitable
homomorphism. The first major step to study these groups is to investigate when two skeleton groups are
isomorphic. An isomorphism between skeleton groups induced by the automorphism of S is called an orbit
isomorphism in [4]; this situation is particularly interesting since it means that the construction of skeleton
groups up to isomorphism depends solely on the structure of S. However, it is also shown in [4] that there
exist exceptional isomorphisms between skeleton groups which are not induced by automorphisms of S.
In [5] we investigate when all isomorphisms between skeleton groups can be realised by orbit isomorphisms.
Here we present some general results of this favour including two interesting special cases where we can
completely solve the isomorphism problem of skeleton groups.

Acknowledgement. This work was supported by Research Training Programme (RTP) scholarship
from Australian Government.
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A triple of distinct vertices (z,v,y) in a graph G = (V, E) such that zv € F and vy ¢ E is called
lifting if deg(z) < deg(y) and lowering if deg(x) > 2 4 deg(y) [1]. A transformation ¢ of a graph G
that replaces G with p(G) = G — zv + vy is called an edge rotation corresponding to a triple of vertices
(2,v,y).

For a lifting (lowering) triple (z,v,y), the corresponding edge rotation is called lifting (lowering). An
edge rotation in a graph G is lifting if and only if its inverse in the graph ¢(G) is lowering.

For bipartite graph H = (V1, E, V»), let dptH (V1) and dptH (V3) denoted degree partitions of parts
Vi and V5.

Let G = (K(V1), E,Va) be a threshold graph [2], where K (V) is a complete subgraph and H =
(W1, E,V3) is a bipartite subgraph of G. H is called the sandwich-subgraph of G.

Note that every threshold graph has no lifting triples and every graph can be obtained by a sequence
of lowering rotations of edges from some threshold graph [1].

A bipartite graph H = (V4, E, V3) is called a bipartite-threshold graph if it has no lifting triples such
that 1) z,y € Vi and v € Vy or 2) z,y € V5 and v € V;.

Theorem. Let H = (V1, E,V3) be a bipartite graph. Then following conditions are equivalent.

1) H is the sandwich-subgraph of a threshold graph G = (K(V4), E, Va),

2) H is the sandwich-subgraph of a threshold graph G = (K(V3), E, V1),

3) Neighborhoods of vertices of each parts Vi and Va are nested,

4) Neighborhoods of vertices of the part Vi are nested,

5) Neighborhoods of vertices of the part Vo are nested,

6) H is a bipartite-threshold graph,

7) H has no lifting triples (x,v,y) such that x,y € V1 and v € Va,

8) H has no lifting triples (x,v,y) such that x,y € Vo and v € V1,

9) dptH (V2) = dptH (V1)",

10) dptH (V1) = dptH (V2)",
where * is the conjugate transformation of partitions.

For a bipartite graph H = (V1, E, V) and a triple of distinct vertices (z,v,y) such that 1) z,y € V;
and v € V, or 2) z,y € V5 and v € V1, we say that corresponding edge rotation preserves parts of H.

Corollary. FEvery bipartite graph can be obtained from some bipartite-threshold graph by a sequence of
lowering rotations of edges which preserve parts of bipartite graphs.

Using these results and Kohnert’s criterion for a partition to be graphical [3], we give a new simple
proof of the well-known Gale-Ryser theorem on representation of two partitions by degree partitions
dptH (V1) and dptH (V2) of the parts of some bipartite graph H = (Vi, E, V).
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Pseudospectrum energy of graphs
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This is joint work with Hayder Shelash

Let G be a graph of order n and A(G) be its (0, 1) adjacency matrix. The set of eigenvalues of A(G)
is said to be the spectrum of G. Let \1(G) > A2(G) > - -+ > A\, (G), the largest eigenvalue A is called the
spectral radius. The energy of graph is the sum of absolute values of them (see [?]), i.e.

n

E=E(@G)=>_ |\l

i=1

Moreover, the resolvent matrix, i.e. R¢(M) := (¢ — M)~! where  is complex variable, M is a matrix
of n x n and I is the unit matrix. R(M) has been investigated in graph theory by Ivan Gutman et al
and some algebric properties were established in ( [?], 2016).

The resolvent matrix of A(G) is R¢(A(G)) = (¢I — A(G))~! and its eigenvalues are

1
H, i=1,2,...,n.
In [?], the resolvent energy of G was defined as
"1
ER = ER(G)=_| 1
©=Y |+ (1)

where ( =n and Ay, Ao, ..., A\, are the eigenvalues.

To have more information about an object represented by a matrix, the pseudospectrum energy of
graph G has been investigated in graph theory and some algebraic properties was established in [?]. For
a given positive integer number e and real eigenvalues A1, A, ..., A, of A(G), the pseudospectrum energy
of graph G is the following set:

1
n—)\i

PE:PE(G):{ETL:‘ ‘>5;1, j=1,2,3,...}. 2)
=1

One can observe that PE(G) is the set of the possible lower bounds to resolvent energy (2) and it lies
between the set of the eigenvalues of A(G) and R:(A(G)). We refer to [?] which gave a wide studies and
applications to the pseudospectrum phenomena.

In this talk, we will provide some properties and examples on the pseudospectrum energy of graphs.
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The derived series of Sylow 2-subgroups of the alternating groups
and minimal generating sets of their subgroups

Ruslan Skuratovskii
The National Technical University of Ukraine Igor Sikorsky Kiev Polytechnic Institute, Kiev, Ukraine
ruslcomp@mail.ru, r.skuratovskii@kpi.ua

The Sylow 2-subgroups of symmetric groups were described by U. Dmitruk and V. Sushchanskii [1]
who presented the elements of these groups as tables, i.e. the ordered sets of polynomials of the certain
form.

We consider the derived series of Sylow 2-subgroups of an alternating group and research their minimal
generating sets. Sylow 2-subgroups of an alternating group have been previously investigated by the
author [7]. In the present investigation, we continue our research [3] about the commutator subgroup of
Sylow 2-subgroups of alternating groups.

The commutator width of a group G, denoted by cw(G) [2], is the maximum of commutator lengths of
elements of its derived subgroup [G, G]. The size of minimal generating sets of the commutator of Sylow
2-subgroup SylaAsx of A,k is found. This investigation continues previous investigations [3—7], where
minimal generating sets of Sylow 2-subgroups of alternating groups were found. Let B be a group and
let C,, denote a cyclic group of order n. For a permutational wreath product with form B C,, we prove
that the commutator width [2] is cw(B1C),) < max(1, cw(B)).

Further we prove that the commutator of SylsAgr has the form Syl'sAgx = SyloAgk—1 K Syl Agk-1,
where the subdirect product is defined by k relations. The structure of this commutator for the case
k # 2™ is additionally found by us. Being more precise, we find that Syl’s Ay, = Syl'aS9 X Syl'a S, X

- X Syllgszzm.

The orders and commutator width of the first, second and third commutator subgroups of Syls Agk
are also found.

For an upper bound of cw (B C,,), we also prove that cw(BC,,) < max(1,cw(B)), where n > 2 and
B is a group. This is a generalization of the result of Nikolov [8] who considered a wreath product with
a perfect passive group which is not required to be perfect now.
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Indices not divisible by a given prime in factorised groups

Victor Sotomayor
University Centre EDEM, Valencia, Spain
vsotomayor@edem.es

This is joint work with Maria-José Felipe, Lev Kazarin, and Ana Martinez-Pastor

In this contribution we show that a finite group G = AB which is the product of two subgroups A
and B has a central Sylow p-subgroup if and only if p does not divide the conjugacy class size (also called
index) of any element in A U B, where p is a fixed prime. Indeed, this result can be framed in a current
research line, namely to analyse how the indices of some elements in the factors of a factorised group
influence the structure of the whole group. It is to be mentioned that the classification of finite simple
groups and some properties of the prime graph of (almost) simple groups are used in our approach.
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Trees and cycles
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This is joint work with Peter J. Cameron

Let T be a tree on n vertices; we may regard the edge e = {4, j} as the transposition (4, j) which swaps
i and j. A classic result by Dénes [1] shows that multiplying together all the transpositions corresponding
to the edges of T' in any order results in an n-cycle. If T is a star then each distinct ordering gives a distinct
cycle and so all possible cycles arise; otherwise some cycles are given by multiple orderings and others
by none. We call the collection of precise numbers of orderings which give each cycle of T its multiplicity
or frequency distribution. In this talk we detail some progress made in our investigation of frequency
distributions of trees. In particular we give a formula which calculates how many distinct cycles arise for
a given T, and we show that finding its distribution is equivalent to counting the linear extensions of a
particular subclass of partial orders which depends on T. We then use this characterisation to find some
information about the distributions of a few particular classes of tree.
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Thin @Q-polynomial distance-regular graphs

Ying-Ying Tan
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This is joint work with Jack H. Koolen, Meng-Yue Cao and Jongyook Park

In this talk, we investigate distance-regular graphs with induced subgraphs K, ;, where 1 <r <t are
integers. In particular, we show that if a distance-regular graph I' contains an induced subgraph Ko ;
(t > 2), then t is bounded above by a function in ﬁ, where 6, is the second largest eigenvalue of T'.
We then apply this bound to thin @-polynomial distance-regular graphs with large a; to show that cs is

bounded above by a function in Glb—li-l'

Acknowledgement. This work was supported by National Natural Science Foundation of China
(No. 11801007, 11671376) and Natural Science Foundation of Anhui Province (No. 1808085MA17).
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On perfect 2-colorings of Hamming graphs

Anna Taranenko
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
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This is joint work with Evgeny Bespalov, Denis Krotov, Aleksandr Matiushev, and Konstantin Vorob’ev

This talk aims to overview the progress in the characterization of perfect colorings of Hamming graphs
H(n,q), mainly focusing on the nonbinary case ¢ > 2 and on new parameters of perfect 2-colorings.

A perfect k-coloring (or an equitable k-partition) f of a graph G is a surjective function from the
vertex set to the set of colors {1,...,k} such that each vertex x of color 7 is adjacent to exactly s; ;
vertices of color j, where s; ; is some constant that does not depend on the choice of x. The matrix
S = (s;,;) of order k is called the quotient matriz of the perfect coloring f. The quotient matrix of a
2-coloring of a regular graph is completely defined by parameters b = s; 2 and ¢ = s2 ;.

Given n and ¢, the Hamming graph H(n,q) is the graph with the vertex set Zq such that vertices x
and y are adjacent if and only if the Hamming distance d(z,y) between them is 1.

Firstly, we conditions necessary for the existence of perfect colorings of Hamming graphs with given
parameters. Most of these conditions are based on algebraic and arithmetic properties of colorings,
distributions of colors in faces, and distance-regularity of Hamming graphs.

Next, we describe several constructions of perfect colorings. The simplest constructions arise from
coverings of Hamming graphs, MDS codes, and 1-perfect codes, while more complex constructions combine
some of the previous ones and provide new admissible parameters of perfect colorings.

At the end of the talk, we summarize results on the admissibility of parameters. In particular, when ¢
is a prime power, we find sufficient conditions for the existence of a (b, ¢)-coloring in H(n, q) for all large
enough n. Moreover, we provide tables with admissibility statuses for parameters of colorings in g-ary
n-dimensional Hamming graphs for small n and ¢ = 3, 4, and 6.

Acknowledgement. This work was funded by the Russian Science Foundation (grant 18-11-00136).
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Algebraic and computer models of parquethedra in the processes of describing their
combinatorial types and filling the space

Aleksei Timofeenko
Siberian Federal University, Krasnoyarsk, Russia.
A.V.Timofeenko62@mail.ru

A parquethedron is a convex polyhedron that has regular or parquet faces. Recall that a parquet
polygon is a convex polygon composed of a finite and greater number of equiangular polygons (see [1]). The
problem of classification of parquethedrons with equal edges is close to the solution. They are described
up to similarity (see [2]). There are ten other types of parquet polygons that cannot serve as faces of
parquethedrons with equal edges. In this talk we discuss the problem of describing the combinatorial
types of such bodies.

Acknowledgement. This work was supported by Krasnoyarsk Mathematical Center, funded by the
Ministry of education and science of the Russian Federation as part of the activities for the creation and
development of regional NOMC (Agreement 075-02-2020-1534/1).
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On distributions over classes of conjugate elements and pairs of orders of products of two
of them (2 x 2,2)-triples of involutions of some groups

Aleksei Timofeenko
V. P. Astaf’ev Krasnoyarsk State Pedagogical University, Krasnoyarsk, Russia
A.V.Timofeenko62@mail.ru

This is joint work with Aleksei Makosi

The triple of involutions (i1, i2,43) of a group G that generates this group and satisfies the condition
i1i9 = i9iy is called its (2 x 2, 2)-triple of involutions, and in this case the group G itself is called (2 x 2, 2)-
generated (see [1]). Every (2 x 2, 2)-triple of involutions is characterized by the pentad (m,n, Cy, Ca, C3),
where m, n are the orders of products of non-permutable involutions ¢1i3, t2i3 and m < n, and C} is the
name of the class of conjugate involutions containing the involution iy, for £ = 1,2, 3. These names are
usually written as 24,2B,.... We do not distinguish (2 x 2, 2)-triples of involutions that have the same
pentads of the specified type.

Obviously, (2 x 2,2)-triples of involutions of a group, translated into each other by its automorphism,
have the same pentads. The following question naturally arises: are there two (2 x 2,2)-triples with the
same pentad such that any automorphism of this group does not map one triple to another?

Theorem 1 If G is one of the following simple groups: an alternating group A; of degree i < 16, a
sporadic group Miy, Mo, Moo, Moz, Moy, Jv,Jo,J3, HS, Suz, Ru, McL, or one of the linear groups:
Lo(n), where n < 32, Lo(p) for primes p such that 37 < p < 241; Ls(n), where n < 7; Ly(n), where
n < 5; Ly(49), then the empty sets or pentads (m,n,Cy,Cq,C3) presented in [2] and only these pentads
correspond to (2 x 2,2)-triples of involutions of the group G.

The theorem contains more groups than its weaker version from [3].

Acknowledgement. This work was supported by Krasnoyarsk Mathematical center, funded by the
Ministry of education and science of the Russian Federation as part of the activities for the creation and
development of regional NOMC (Agreement 075-02-2020-1534/1).
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Finite factorized groups with w-supersoluble subgroups
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This is joint work with V.S. Monakhov

Throughout this paper, all groups are finite and G always denotes a finite group. The formations of all
supersoluble groups and groups with abelian Sylow subgroups are denoted by 4 and A, respectively. The
notation Y < X means that Y is a subgroup of a group X and P is the set of all primes. The symbol G*
denotes the intersection of all normal subgroups N of G with G/N € X, for any non-empty formation X.

A.F. Vasil’ev, T.I. Vasil’eva and V. N. Tyutyanov in [1] proposed the following definitions. A subgroup
H of a group G is called P-subnormal in G if either H = G or there is a chain subgroups

H=Hy<H <...<H,=0G, |HL‘IH7;_1‘€]P), Vi.

A group G is called w-supersoluble (widely supersoluble) if every Sylow subgroup of G is P-subnormal
in G. Denote by wil the class of all w-supersoluble groups, see [1].

Note that 4 C wil and [E72]S3 € wil\ 4. Here [E;2]S3 is a minimal non-supersoluble group of
order 2 -3-72. In [1, Theorem 2.7, Proposition 2.8] it is proved that wil is a subgroup-closed saturated
formation and every group from wil has an ordered Sylow tower of supersoluble type.

The class wil is not closed under taking product of P-subnormal subgroups. The factorizable groups
G = AB with w-supersoluble P-subnormal factors A and B were investigated in many works, see, for
example, references in [2], [3]. Such a group G is w-supersoluble if G is nilpotent [4, Theorem 4.7]. If
A and B are nilpotent and P-subnormal in G = AB, then G is supersoluble [2], [5]. If A is nilpotent
and B is supersoluble, then G may be not w-supersoluble, see [6, Example 1]. New sufficient conditions
for w-supersolubility were obtained by A. Ballester-Bolinches et al. in [3].

In the present paper, we transfer the results of work [3] on arbitrary subgroup-closed saturated
formation § such that {4 C F C wil.

Theorem. Let § be a subgroup-closed saturated formation such that U C § C wil. Let A and B be
P-subnormal subgroups of a group G = AB such that A € § and B is nilpotent. If B permutes with each
Sylow subgroup of A, then G € §.
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Iterated wreath products in product action
and where they act

Matteo Vannacci
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vannacci.m@gmail.com

It is well-known that the automorphism group of a d-adic rooted tree Aut(T) is isomorphic to the
infinitely iterated wreath of copies of the symmetric group Sym(d) w.r.t. the imprimitive action. The
group Aut(7T) has several interesting subgroups, e.g. Grigorchuk and Gupta-Sidki groups. These are
examples of just infinite groups, i.e. groups that are infinite and each of their proper quotients is finite.

On the other hand, there is another natural action of the wreath product, i.e. the product action, and
we can consider infinitely iterated wreath products w.r.t. the product action (IIWPPA for short).

In this talk T will present some work in progress on abstract subgroups of [IWPPA and some
structures they preserve. Finally, I will hint at how these ideas could be used to produce new examples
of (hereditarily) just infinite groups.

Acknowledgement. This work was supported by grant ESPDOC18 of UPV/EHU.
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Competition numbers and phylogeny numbers of generalized Hamming graphs with
diameter at most three
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This is joint work with Soesoe Zaw

Let D be a digraph. The competition (resp. phylogeny) graph of D is the graph sharing the same
vertex set as D and two vertices are adjacent if and only if their out-neighbors (resp. close out-neighbors)
have a non-empty intersection. The competition (resp. phylogeny) number x(G) (resp. ¢(G)) of a graph
G is the least number of vertices to be added to G to make G a competition (resp. phylogeny) graph of an
acyclic digraph. Let GH,, ... ¢, be the generalized Hamming graph with diameter d such that GHg, ... 4, is
the Cartesian product of d complete graphs of order ¢, ..., ¢4, respectively. We determine the competition
numbers and the phylogeny numbers of generalized Hamming graphs with diameters 2 and 3. Thanks to
these results, we solve the problem raised by Wu et al. by proving that for any non-negative integer k
there is a connected graph G such that ¢(G) — k(G) +1 = k.

Acknowledgement. This work was supported by NSFC (11671258).
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Third proof of a theorem on the intersection of abelian subgroups in finite groups
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Let G be a finite group, A and B subgroups of G. We define M¢ (A, B) as the set of minimal by the
inclusion intersections of the form AN BY, g € G, and mg(A, B) as a subset of minimal by the order
elements from Mg (A, B). We put Ming(A, B) =< Mg(A, B) > and ming(4, B) =< mg(A4,B) >. It is
clear that Ming(A, B) > ming(A, B), and also that

ming(A, B) # 1 <= Ming(A, B) # 1.

Theorem. Let G be a finite group and A and B be abelian subgroups of G. Then Ming(A, B) < F(Q).

This theorem was proved by the author in 1994 (see [1]) with using a certain uniqueness theorem and
the Baer-Suzuki theorem (see [2, Theorem 2.12]).

Later, in 2008, Isaacs in Theorem 2.18 from his remarkable book [2] modified our proof of the theorem
referring only to the Baer-Suzuki theorem while retaining the main idea of the proof from [1].

In this work, we present a proof of the theorem under consideration, which refers only to Wielandt’s
theorem (see [2, Theorem 2.9]) which, under certain conditions, is an uniqueness theorem.

Acknowledgement. The reported study was funded by RFBR, project number 20-01-00456.
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Some results related to the open problem proposed by Professor Monakhov

Jia Zhang
China West Normal University, Nanchong, China.
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In this talk, we mainly investigated the arithmetic properties of second maximal subgroups of finite
groups. Generally speaking, we investigated the problem proposed by Monakhov and developed the
research of Meng and Guo by weakening the condition that solvability.
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Complex Clifford group and unitary design

Da Zhao
Shanghai Jiao Tong University, Shanghai, China
jasonzd@sjtu.edu.cn

This is joint work with Eiichi Bannai and Manabu Oura

Roughly speaking, unitary design is a finite subset of the unitary group which approximates the
whole unitary group concerning integrals. It rises from the need in experiments and engineering related
to quantum physics. Formally a unitary ¢-design is a subset X of the unitary group U(d) such that

1
L U®t UT ®t :/ U® ® U’r et qu.
X UZX wne= teg)

The complex Clifford group, which is relatively easy to implement in quantum physics, outstands as
an infinite family of unitary 3-designs [3]. It is pointed out in [4] that the complex Clifford group fails
gracefully to be a unitary 4-design, and projective 5-designs may come for free from projective 4-designs
by the complex Clifford group.

The invariants of complex Clifford group of genus m were characterized by Runge’s theorem [2]. Tt
says that the space of polynomial invariants is spanned by the genus-m complete weight enumerators of
binary doubly even self-dual codes.

We generalize Runge’s theorem from polynomial invariants to complex conjugate polynomial invariants.
A complex conjugate polynomial is a polynomial in variables z; as well as their complex conjugates T7.

Theorem. [Analogue of [1, Lemma 4.9]] The space of homogeneous complex conjugate invariants
of degree (N1, Na) for the complex Clifford group X, of genus m is spanned by the conjugate complete
weight enumerators ccwe(C(m)), where C ranges over all binary doubly-even self-dual codes of length
(N1, N3); This is a basis if m+ 1 > (N1 + Na)/2.

In particular the number of binary doubly-even self-dual codes of length (4,4) or (5,5) are both 4.
Consequently we settle Conjecture 2 in [4].

Corollary If an orbit of the complex Clifford group is a projective 4-design, then it is automatically

a projective 5-design.

Acknowledgement. This work was supported in part by TGMRC (Three Gorges Mathematical
Research Center) in China Three Gorges University, JSPS KAKENHI (17K05164), and NSFC (11671258).
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On the Mobius function of a finite group
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This is joint work with Martino Borello and Francesca Dalla Volta

The Mobius function pp : P X P — Z on a locally finite poset P is defined inductively by

pp(z,y) =0 ifx Ly, pplz,z)=1, D pp(zy) =0ifz<y.
<2<y
When P is the subgroup lattice £ of a finite group G, the Mdobius function p, was used by Hall [6]
to enumerate generating tuples of G. Actually, the knowledge of p,s has a number of combinatorial

applications, in the context of enumerative problems where the Mobius inversion formula turns out to be
applicable.

Particular attention has been payed to the case when G is a finite simple group; for instance, the
values s (H,G) have been computed for any subgroup H when G is a group PSL(2,q) [4], a Suzuki
group [5], a small Ree group [8]. In this talk we will show computations for the groups PSU(3,22") [9]
and PSL(3,2?7) with prime p [2].

For a finite group G, another poset considered in the literature is the “subgroup pattern” of G, namely
the poset C of conjugacy classes of subgroups of G, where [H| < [K] if H is contained in a conjugate of
K. Pahlings [7] proved that, whenever G is solvable, the relation

Mﬁ(H7 G) = [NG’(H) :G'N H] : MC(Ha G)

holds for any subgroup H of G. This property does not hold in general, the Mathieu group M5 being
a counterexample [1]. Yet, we show that this property holds for large classes of non-solvable groups,
including all minimal non-solvable groups [3].

Acknowledgement. This work was supported by the Italian National Group for Algebraic and
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Non-existence of sporadic composition factors for finite groups
with a condition on their Gruenberg—Kegel graphs

Marianna Zinovieva
Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia
zinovieva-mr@yandex.ru

For a positive integer n, denote by 7(n) the set of prime divisors of n. Given a finite group G, write
7(Q) for 7(|G|) and w(G) for the set of element orders of G.

The Gruenberg—Kegel graph (or the prime graph) GK(G) of G is a simple graph with the vertex set
(@) in which two distinct vertices r and s are adjacent if and only if rs € w(G).

A group G is said to be recognizable by its Gruenberg-Kegel graph if for any finite group H the
equality GK(G) = GK (H) implies the isomorphism G = H.

M. Hagie [1] described finite groups with Grunberg-Kegel graphs as Gruenberg-Kegel graphs of
sporadic groups. A. V. Zavarnitsine [2] proved the recognizability by Gruenberg—Kegel graph of the
simple groups Ga(7), 2Ga(q) for ¢ = 3™+ > 3, and J,.

A. M. Staroletov [3] proved the following theorem: If a finite group G isospectral to a finite simple
group L (i. e., w(G) = w(L)) contains a sporadic group S among its composition factors and L is not
isomorphic to Alt,, for n > 22, then either L = Us(2) and S = My, or L = S.

In connection with the problem of recognizing finite groups by Gruenberg—Kegel graph, the question
arose on the compositional structure of a finite group whose Gruenberg—Kegel graph coincides with
Gruenberg—Kegel graph of a known finite simple group.

We consider sporadic composition factors of such groups and prove the following two theorems.

Theorem 1. Let H be a finite simple exceptional group of Lie type, G be a finite group with
GK(G) = GK(H), and S be a composition factor of G. Then S is not isomorphic to a sporadic simple

group.

Theorem 2. Let H = A,,_1(q) be a finite simple linear group over a field of order ¢, n > 7, n # 8,10,
G be a finite group with GK(G) = GK(H), and S be a composition factor of G. Then S is not isomorphic
to F} and F5.

Acknowledgement. The reported study was funded by RFFI and NNSF of China, project number
20-51-53013.
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A family of linearized polynomials and related linear sets

Ferdinando Zullo
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This is joint work with Olga Polverino

Linearized polynomials appear in many different contexts, such as rank metric codes, cryptography and
linear sets, and the main issue regards the characterization of the number of roots from their coefficients,
see e.g. [1,4,5]. In this talk we will provide bounds and characterizations on the number of roots of
linearized polynomials of this form

s+2n s+n(t—1)

ar + bol‘qs + bll‘qSJrn + byx? + ..+ b2l € ]Fqnt [J}], (3)

with ged(s,n) = 1. Then we present a family of linear sets defined by polynomials of shape (3) in the
projective line PG(1,¢™) whose points have a small spectrum of possible weights, containing most of
the known families of scattered linear sets. In particular, we carefully study the linear sets in PG(1, ¢%)
presented in [3] (see also [2]). These results have been proved in [6].

Acknowledgement. This research was supported by the project “VALERE: VAnviteLli pEr la
RicErca"of the University of Campania “Luigi Vanvitelli”, and by the Italian National Group for Algebraic
and Geometric Structures and their Applications (GNSAGA - INdAM).
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